Пример стохастической модели процесса. Теоретико-вероятностные (стохастические) модели и методы исследований. Дискретно – непрерывные модели

ВВЕДЕНИЕ

Математические модели и методы моделирования экономических объектов являются необходимыми для управления экономическими объектами. Моделирование экономических систем актуально для специалистов по управлению экономическими объектами, особенно для тех, кто связан с созданием автоматизированных систем управления экономическими объектами.

Объектами исследования моделирования экономических систем являются любые экономические объекты. Математические модели экономических систем должны удовлетворять требованиям: адекватности, универсальности, полноты и простоты, должны соответствовать расчетным практическим формулам. Требованиям, предъявляемым к математическим моделям, наиболее соответствуют детерминированные, динамические, полные, теоретические непрерывные и дискретные модели.

История моделирования экономических систе м – это история имитационных математических моделей, которые лишь частично удовлетворяют предъявляемым требованиям и не обладают познавательными функциями. Неудовлетворенность степенью выполнения предъявляемых требований составляет основную проблему моделирования экономики. Решение этой проблемы моделирования экономики связано с развитием и использованием функциональных математических моделей и методов моделирования экономических объектов. Особенностью функционального моделирования является то, что оно основано на фундаментальных законах функционирования экономики, а преимуществом то, что функциональные модели в полной степени удовлетворяют предъявляемым требованиям и обладают высокими познавательными функциями. Поэтому в истории моделирования экономики можно выделить следующие этапы:

Этап формирования и применения имитационных математических моделей экономических объектов на основе отдельных закономерностей экономики;

Этап формирования и применения функциональных математических моделей экономических объектов на основе законов экономических систем.

Современные представления функционального моделирования экономических объектов выражены в законах функционирования, функциональных моделях и методами моделирования экономических систем. Овладение функциональн ым моделировани ем обеспечивает формирование у специалистов теоретических основ моделирования экономических систем, которые способствуют повышению качества моделирования поведения экономических объектов, создания автоматизированных систем управления экономическими объектами и повышению эффективности управления экономическими объектами.

Цель работы - ознакомление с математическими моделями и методами моделирования экономических систем, развитие умений применять эти знания на практике.

Задачи работы :

Рассмотреть стохастические модели в экономике ;

Рассмотреть практическое применение стохастических моделей в экономике ;

- развитие умений применять модели и метод ы моделирования экономических систем на практике .

1 СТОХАСТИЧЕСКИЕ МОДЕЛИ В ЭКОНОМИКЕ

В процессе исследования объекта часто бывает нецелесообразно или даже невозможно иметь дело непосредственно с этим объектом. Удобнее бывает заменить его другим объектом, подобным данному в тех аспектах, которые важны в данном исследовании. В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием . Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет – это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

Модель – это мысленно представляемая или материально реализованная система, которая, отображая или воспроизводя объект исследования, способна замещать его так, что ее изучение дает новую информацию об этом объекте.

Познавательные возможности модели обуславливаются тем, что модель отражает какие-либо существенные черты объекта-оригинала. Вопрос о необходимости и достаточной мере сходства оригинала и модели требует конкретного анализа. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть оригиналом), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала.

Таким образом, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Из этого следует, что для одного объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеет одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие. Вероятностное подобие отмечается при наличии сходства между процессами вероятностного характера в объекте и модели. Геометрическое подобие имеет место при сходстве пространственных характеристик объекта и модели.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы, закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D ), а на оси абсцисс – цена (Р ). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот.

Физические или вещественные модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

При моделировании используется аналогия между объектом –оригиналом и его моделью. Аналогии бывают следующими:

  1. внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
  2. структурная аналогия (водопроводная сеть и электросеть моделируются с помощью графов, отражающих все связи и пересечения, но не длины отдельных трубопроводов);
  3. динамическая аналогия (по поведению системы) - маятник моделирует электрический колебательный контур.

Математические модели относятся ко второму и третьему типу. Смысл математического моделирования заключается в том, что эксперименты проводятся не с реальной физической моделью объекта, а с его описанием. Для них свойственно то, что они реализуются с использованием информационных технологий. Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. "Экономико-математическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме" (академик В.С. Немчинов).

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования различают модели:

    • микроэкономические;
    • одно-, двухсекторные (одно-, двухпродуктовые);
    • многосекторные (многопродуктовые);
    • макроэкономические;
    • глобальные.

    По учету фактора времени модели подразделяются на:

    • статические;
    • динамические.

В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.

По цели создания и применения различают модели:

    • балансовые;
    • эконометрические;
    • оптимизационные;
    • сетевые;
    • систем массового обслуживания;
    • имитационные (экспертные).

По учету фактора неопределенности модели подразделяются на:

    • детерминированные (с однозначно определенными результатами);
    • стохастические (с различными, вероятностными результатами).

По типу математического аппарата различают модели:

    • линейного и нелинейного программирования;
    • корреляционно-регрессионные;
    • матричные;
    • сетевые;
    • теории игр;
    • теории массового обслуживания и т.д.

Стохастическая модель – такая экономико-математическая модель , в которой параметры , условия функционирования и характеристики состояния моделируемого объекта представлены случайными величинами и связаны стохастическими (т. е. случайными, нерегулярными) зависимостями, либо исходная информация также представлена случайными величинами. Следовательно, характеристики состояния в модели определяются не однозначно, а через законы распределения их вероятностей . Моделируются, например, стохастические процессы в теории массового обслуживания , в сетевом планировании и управлении и в других областях. При построении стохастической модели применяются методы корреляционного и регрессионного анализов , другие статистические методы. Другие названия стохастической модели – недетерминированная, вероятностная модель.

Существенной особенностью социально-экономических процессов является невозможность однозначно предсказать их ход на основе имеющейся априори информации. Несмотря на то, что социально-экономические процессы подчиняются определенным объективным законам, в каждом конкретном процессе эти законы проявляются через множество неопределенностей .

Математическая же модель процесса может содержать либо детерминированные параметры и связи, либо стохастические, но не может (по крайней мере, при нынешнем состоянии науки) содержать неопределенности.

Выбор детерминированного либо стохастического подхода к моделированию того или иного социально-экономического процесса зависит от целей моделирования, возможной точности определения исходных данных, требуемой точности результатов и отражает информацию исследователя о природе причинно-следственных связей реального процесса. При этом неопределенные факторы, которые могут иметь место в реальных процессах, должны быть приближенно представлены как детерминированные или стохастические. Характер параметров, входящих в модель, относится к тем исходным допущениям, которые могут быть обоснованы только эмпирическим путем. Соответствующая гипотеза о детерминированном или стохастическом характере параметров и связей модели принимается в том случае, если она в пределах требуемой или возможной точности определения этих параметров не противоречит опытным данным.

Большинство современных моделей социально-экономических процессов основано на теоретико-вероятностных конструкциях . В связи с этим целесообразно рассмотреть вопрос об исходных посылках применимости таких конструкций к моделированию.

Теория вероятностей изучает математические модели экспериментов (реальных явлений), исход которых не вполне однозначно определяется условиями опыта. Поэтому неоднозначность социально-экономических процессов часто является решающей в выборе стохастического (вероятностного) подхода к их моделированию. Вместе с тем не всегда учитывается, что аппарат теории вероятностей применим для описания и изучения не любых экспериментов с неопределенными исходами, а лишь экспериментов, исходы которых обладают статистической устойчивостью . Тем самым важнейший вопрос об эмпирическом обосновании применимости теоретико-вероятностных методов к рассматриваемым конкретным характеристикам социально-экономических процессов иногда полностью выпадает из поля зрения.

Применимость методов теории вероятностей для исследования тех или иных процессов может быть обоснована только эмпирически на основе анализа статистической устойчивости характеристик этих процессов.

Статистическая устойчивость представляет собой устойчивость эмпирического среднего, частоты события или каких-либо других характеристик протокола измерений исследуемого параметра того или иного процесса.

Следует, однако, отметить, что вопрос о статистической устойчивости реального социально-экономического процесса в целом, а, следовательно, и о применимости теоретико-вероятностных понятий к его моделированию, в настоящее время может быть решен только на интуитивном уровне. Это объективно обусловлено отсутствием достаточного числа опытов, касающихся процесса в целом. Вместе с тем большинство «элементарных» процессов, составляющих тот или иной социально-экономический процесс, носят случайный характер (т.е. гипотеза об их статистической устойчивости не противоречит имеющемуся опыту). Так, например, факт покупки того или иного количества конкретного товара за установленный период времени достаточно часто является случайным событием. Случайным является количество родившихся детей. Случайный характер носят процессы потребления. Случайными являются отказы техники, моральное состояние людей, участвующих в производстве товаров и услуг и т.д. Случайность этих явлений эмпирически подтверждена достаточно большим числом экспериментов.

Все указанные «элементарные» случайные процессы взаимодействуют между собой, объединяясь в едином социально-экономическом процессе. Несмотря на то, что управление в социально-экономической сфере направлено на снижение элемента случайности и придание этому процессу детерминированного целенаправленного характера, реальные процессы столь сложны, что как бы ни была высока степень централизации управления, случайные факторы в них всегда присутствуют. Поэтому природа социально-экономических процессов остается случайной в широком смысле. Это служит основанием для применения стохастических моделей при их исследовании, хотя полную стохастическую устойчивость того или иного процесса в целом вряд ли можно вполне гарантировать.

В настоящее время сложились два основных подхода к стохастическому моделированию социально-экономических процессов (рис. 4.8). Первое направление связано с построением стохастических моделей на основе метода статистических испытаний (Монте-Карло). Второе направление заключается в построении аналитических моделей. Оба эти направления развиваются параллельно и взаимно дополняют друг друга.

Главной особенностью моделей, основанных на методе статистических испытаний, является то, что они приближенно воспроизводят социально-экономический процесс на основе имитации его элементарных составляющих и их взаимосвязей. Это позволяет моделировать процессы очень сложной структуры, зависящие от большого числа разнообразных факторов. Вместе с тем модели статистических испытаний, как правило, громоздки. Их применение требует большого объема памяти ЭВМ и связано с большими затратами машинного времени. Существенным недостатком этих моделей также является отсутствие конструктивных способов оптимизации.

Некоторые из недостатков имитационных статистических моделей социально-экономических процессов преодолеваются применением аналитических моделей.

Рис. 4.8. Стохастическое моделирование социально-экономических процессов

В настоящее время для построения аналитических моделей стохастических процессов применяются два основных подхода – микроскопический и макроскопический.

Микроскопический подход состоит в детальном изучении поведения каждого элемента социально-экономической системы.

Макроскопические модели изучают только макросвойства системы и учитывают только средние характеристики состояния системы, например, среднее количество элементов системы, находящихся в некотором определенном состоянии. Это приводит к потере информации о состоянии каждого элемента социально-экономической системы, так как одни и те же макросостояния могут быть результатом различных сочетаний микросостояний. В то же время макроскопический подход позволяет сократить размерность математической модели, сделать ее более обозримой, сократить затраты ресурсов ЭВМ при производстве расчетов. Микроскопический подход предпочтителен в случае, когда требуется более детальная информация о поведении системы. Макроскопический подход применяется для достаточно быстрых оценочных расчетов.

Отличительная черта детерминированной модели состоит в том, что при заданных параметрах и начальных условиях процесс полностью определен для любого момента времени t > 0.

При стохастической трактовке модель описывает динамику вероятностных характеристик (например, математических ожиданий) процесса и, следовательно, характеризует процесс в среднем, представляя лишь оценки для каждой конкретной реализации. Стохастические модели социально-экономических процессов позволяют предсказать только средние результаты (моменты распределения результатов процесса) или вероятности наступления тех или иных результатов.

7.1 Сущность и задачи стохастического моделирования

Задачи детерминированного факторного анализа (ДФА) нашли широкое применение в практике аналитической работы, однако детерминированный подход не позволяет учитывать влияние на результативный показатель очень многих факторов, не находящихся с ним в пропорциональной зависимости (спрос, текучесть кадров, размещение торговой сети и т. д.). Кроме того, в задачах ДФА невозможно выделить результаты одновременно действующих факторов. Эти недостатки обусловили необходимость применения стохастического моделирования в экономическом анализе, называемого иначе математико-статистическими методами изучения связей, которые являются в определенной степени дополнением и углублением ДФА.

Таким образом, в экономическом анализе стохастические модели используются в тех случаях, когда необходимо:

– оценить влияние факторов, по которым нельзя построить жестко детерминированную модель;

– изучить и сравнить влияние факторов, которые нельзя включить в одну и ту же детерминированную модель;

– выделить и оценить влияние сложных факторов, которые не могут быть выражены одним определенным количественным показателем.

В отличие от детерминированного, стохастический подход для своей реализации требует выполнения ряда предпосылок:

1. Качественная однородность совокупности, т. е. в пределах варьирования значений факторов не должно происходить качественного скачка в характере отражаемого явления.

2. Достаточная численность совокупности наблюдения, позволяющая с точностью и надежностью выявить имеющиеся закономерности (в теории статистики считается, что количество наблюдений должно в 6-8 раз превышать количество факторов).

3. Наличие методов, т. е. специального математического аппарата, позволяющего выявить тесноту связи между изучаемыми показателями и оценить величину влияния факторов на изменение результативного показателя.

В целом стохастическое моделирование предназначено для решения трех задач:

1) установление факта наличия или отсутствия связи между изучаемыми признаками;

2) выявление причинных связей между изучаемыми показателями и количественное измерение действия факторов на результативный показатель;

3) прогнозирование неизвестных значений результативных показателей.

Проведение стохастического моделирования осуществляется согласно следующим этапам:

1) качественный анализ, подразумевающий постановку цели анализа, определение результативных и факторных признаков, отбор и отсев факторов;

2) количественный анализ, т. е. построение регрессионной модели (уравнения регрессии) и расчет параметров уравнений регрессии;

3) проверка адекватности модели, т. е. оценка точности (надежности) уравнения связи и правомерности его использования для практической цели.

Практическая реализация указанных этапов основывается на применении корреляционного и регрессионного методов анализа, рассмотренных ниже.


7.2 Методы стохастического моделирования

Методы стохастического моделирования включают в себя корреляционно-регрессионный анализ, в результате которого будут рассчитаны коэффициенты ее тесноты и значимости (т. е. проведен корреляционный анализ); будет построена регрессионная зависимость (т.е. проведен регрессионный анализ), позволяющая количественно измерить действия факторов на результативный показатель.

1. Корреляционный метод позволяет количественно выразить взаимосвязь между показателями. При этом если показатель зависит от одного фактора, то речь идет о парной корреляции, если он зависит от множества факторов, то о множественной корреляции. Основная особенность корреляционного анализа в том, что он устанавливает лишь факт наличия связи и степень ее тесноты, не вскрывая причины.

Задача корреляционного анализа – выявить тесноту связи изучаемых признаков, что осуществляется либо с помощью коэффициента корреляции (при прямолинейной зависимости), либо с помощью корреляционного отношения (при линейной и нелинейной зависимости).

Коэффициент корреляции (парный коэффициент корреляции, линейный коэффициент корреляции) между фактором х и результативным показателем Y определяется следующим образом:

где y – абсолютное значение результативного показателя; x – абсолютное значение фактора; n – количество наблюдений.

Коэффициент корреляции может принимать значения от –1 до +1. При этом если:

r = -1, то это означает наличие функциональной связи обратно-пропорционального характера;

r = +1, то это означает наличие функциональной связи прямо-пропорционального характера (и в этом и в другом случае переходят к детерминированному факторному анализу);

r = 0, то это означает отсутствие связи между фактором и изучаемым результативным показателем (фактор исключается из факторной системы);

Другие значения r свидетельствуют о наличии стохастической зависимости, причем чем больше /r/ стремится к 1, тем связь теснее. В частности:

/r/ < 0,3 означает слабую связь;

0,3 < /r/ < 0,7 – связь средней тесноты;

/r/ > 0,7 – связь тесная, т. е. имеется объективная возможность перейти к стохастическому факторному анализу.

При парной корреляции теснота связи изучается между результативным признаком и фактором.

В случае множественной корреляции тесноту связи между результативным показателем и набором факторов изучают на основе коэффициента множественной корреляции (R):

,

где – среднее значение результативного показателя, вычисленное по уравнению регрессии; – среднее значение результативного показателя, вычисленное по исходным данным.

Коэффициент множественной корреляции принимает только положительные значения в пределах от 0 до 1. При значении R≤0,3 говорят о малой зависимости между величинами, при значении 0,3 < R< 0,6 – о средней тесноте связи, при R>0,6 – о наличии существенной связи.

При множественной корреляции теснота связи изучается:

– между результативным признаком (функцией) и каждой переменной (аргументом);

– между переменными попарно.

Альтернативным показателем степени зависимости между двумя переменными является коэффициент детерминации, представляющий собой возведение в квадрат коэффициента корреляции (r 2 или R 2 – величина достоверности аппроксимации). Коэффициент детерминации, значение которого должно стремиться к 1, показывает, чему равна доля влияния изучаемого (изучаемых) фактора (факторов) на результативный показатель. При этом следует помнить, что при условии, если r 2 (или R 2)<0,5, синтезированные математические модели связи практического значения не имеют.

Практическая реализация корреляционного анализа включает следующие последовательные этапы:

1) постановка задач и выбор признаков;

2) формирование массива исходной статистической информации, определение степени ее однородности (на основе коэффициента вариации);

3) предварительная характеристика взаимосвязи (аналитические группировки, графики);

4) устранение мультиколлинеарности (взаимозависимости факторов), уточнение набора факторов (отбор наиболее существенных) на основе коэффициента корреляции, индекса детерминации или критерия Стьюдента (подробно см. п. 7.3). При этом в ходе отбора факторов следует придерживаться следующих правил:

– учитывать причинно-следственные связи между показателями (не рекомендуется включать в модель взаимосвязанные факторы: если парный коэффициент корреляции между двумя факторами больше 0,85, то один из них необходимо исключить).

– отбирать самые значимые факторы;

– рассматривать только те факторы, которые должны быть количественно измеримы, т. е. иметь единицу измерения и находить отражение в учете и отчетности;

– учитывать только однонаправленные факторы (т. е. при линейном характере зависимости нельзя включать в модель факторы, связь которых с результативным показателем имеет криволинейный характер);

После осуществления всех вышеуказанных процедур в случае установления факта высокой тесноты связи (> 0,7) приступают к решению второй задачи – регрессионному анализу, который позволяет выявить конкретные величины влияния факторов на изменение результативного показателя.

2. Регрессионный анализ – это метод установления аналитического выражения (т.е. уравнения регрессии) стохастической зависимости между исследуемыми признаками.

Уравнение регрессии показывает, как в среднем изменяется результативный признак (Y) при изменении любой из переменных (Х i) и имеет вид: Y = f (x 1 ,x 2,… x n),

где Y – зависимая переменная, т.е. результативный показатель; x i – независимые переменные (факторы).

В ходе регрессионного анализа решаются две главные задачи:

– построение уравнения регрессии, т. е. нахождение вида зависимости между результативным показателем и независимыми факторами;

– оценка значимости полученного уравнения (на основе коэффициента детерминации, критерия Фишера и критерия Стьюдента).

Вид уравнения регрессии определяется по графику, изображающему связь между факторами и результативным показателем, который строится на основе однородной совокупности статистических данных и служит обоснованием уравнения связи.

Если зависимость линейная (на графике изображена в виде прямой восходящей или снисходящей линии), то при:

а) однофакторном анализе уравнение будет иметь вид: Y(х) = а +b·x,

где Y – результативный показатель; b – коэффициент регрессии, который показывает, насколько изменится результативный показатель при изменении фактора на 1 ед.; а – свободный член, который показывает величину влияния неучтенных факторов; х – фактор;

б) многофакторном анализе уравнение будет иметь вид:

Y(х) = а +b 1 x 1 + b 2 x 2 +…+ b n x n.

Если зависимость нелинейная (на графике изображена в виде параболы или гиперболы), то уравнение регрессии принимает следующий вид:

Y(х) = а +b·x + с·x 2 – при графике в виде параболы;

Y(х) = а +b:x 2 – при графике в виде гиперболы.

При сложном характере зависимости между изучаемыми явлениями используются более сложные параболы (третьего, четвертого порядка (полинома) и т. д.), а также квадратическое, степенные, показательные и другие функции.

Выбор конкретного уравнения регрессии и его решение осуществляется в рамках табличного процессора MS Excel или статистического программного пакета STADIA.

Сущность решения уравнений регрессии заключается в нахождении параметров регрессии (а и b). Это осуществляется по способу наименьших квадратов с использованием системы нормальных уравнений, суть которого заключается в минимизации суммы квадратов отклонений фактических значений результативного показателя от его расчетных значений.

При прямолинейной зависимости система нормальных уравнений имеет вид:

∑y = na +b∑x

∑xy = a∑x +b∑x 2 .

При криволинейной зависимости:


∑y(1/x)= a∑1/x +b∑(1/x) 2 .

Для оценки адекватности модели используют такие критерии, как ошибка аппроксимации, F-отношения, коэффициента детерминации, подробно рассмотренные в п. 7.3.

В необходимых случаях построение уравнения регрессии может быть использовано для прогнозирования результативного признака.

Апробируем методику корреляционно-регрессионного анализа на конкретном примере.

Пример 7.1 На основании данных табл. А необходимо проанализировать зависимость между расходами на оплату труда (Y) и выручкой от продажи товаров (х).


Таблица А – Данные о выручке от продажи товаров и сумме расходов на оплату труда в разрезе торговых организаций тыс. руб.

№ мага-зинов Выручка от продажи товаров № магазинов Выручка от продажи товаров Сумма расходов на оплату труда
А 1 2 Б 3 4
1. 3 200 190 15. 1 690 177
2. 500 45 16. 7 450 230
3. 12 000 670 17. 12 900 587
4. 8 560 345 18. 2 010 166
5. 14 100 713 19. 1 650 105
6. 11 300 470 20. 5 115 241
7. 4 300 194 21. 8 945 400
8. 1 010 98 22. 11 900 523
9. 8 230 244 23. 14 200 780
10. 12 560 510 24. 10 300 576
11. 6 201 215 25. 11 450 425
12. 11 500 603 26. 13 000 606
13. 13 300 575 27. 6 100 210
14. 1 000 95 28. 7 500 249

На основании данных табл. А построим график зависимости изменения расходов на оплату труда от изменения товарооборота (см. рисунок).

Зависимость динамики расходов на оплату труда от выручки от продажи товаров


Данные графика свидетельствуют о том, что между расходами на оплату труда и выручкой от продажи товаров существует прямолинейная зависимость. Далее измерим тесноту связи между изучаемыми показателями на основе коэффициента корреляции, для чего сгруппируем магазины по сумме выручки от продажи товаров (см. тему 3) и составим следующую разработочную таблицу (табл. Б).

Таблица Б – Разработочная таблица для определения показателей, используемых при расчете коэффициента корреляции

Группы магазинов по сумме выручки от продажи товаров Количество магазинов

Выручка от продажи товаров (x i), млн руб.

Сумма расходов на оплату труда (y i), млн руб.

От 500 до 3 220 включ. 7,000 11,060 0,876 9,689 122,324 0,768
От 3 221 до 5 440 включ. 2,000 9,415 0,435 4,096 88,642 0,190
От 5 441 до 8 160 включ. 4,000 27,251 0,904 24,635 742,617 0,818
От 8 161 до 10 880 включ. 4,000 36,035 1,565 56,394 1298,521 2,450
Св. 10 881 11,000 138,210 5,859 809,772 19102,004 34,328
Итого 28,000 221,971 9,639 904,586 21354,107 38,550

Примечание. Согласно данным таблицы, элементы расчета коэффициента корреляции имеют следующие значения:

Σx i = 221,971;

Σy i = 9,639; Σy i x i =904,586; Σx 2 i = 21 354,107; Σy 2 = 38,550.

Рассчитанные данные подставляются в формулу коэффициента корреляции:

r =

Коэффициент детерминации: r 2 =0,8 2 =0,64.

Коэффициент корреляции, равный 0,8 ед., означает наличие высокой стохастической зависимости между суммой расходов на оплату труда и выручкой от реализации. Образование данной стохастической зависимости объясняется наличием (и доминированием в данном случае) постоянной части расходов по заработной плате, начисление которой не увязано с динамикой результата хозяйственной деятельности организации, т. е. выручки от продажи, а значение коэффициента детерминации, составляющее 0,64 ед. означает, что изменение расходов на оплату труда на 64 % объясняется изменением выручки от продажи, что дает основание для проведения регрессионного анализа.

Согласно виду графика, представленного на рисунке, между изучаемыми показателями существует прямолинейная корреляционная зависимость, в связи с чем уравнение регрессии будет иметь вид: Y(х) = а +b·x,

где Y – расходы на оплату труда; х – выручка от продажи товаров.

Для определения параметров а и в следует решить систему нормальных уравнений методом наименьших квадратов:

∑y = na +b∑x

∑xy = a∑x +b∑x 2 .

Отсюда значения коэффициента в определяется по формуле

Рассчитанное значение параметра в говорит о том, что при увеличении выручки от продажи товаров на 1 млн руб. расходы на оплату труда возрастут на 42,3 тыс. руб. При этом подставив значение данного параметра в первое уравнение системы, определим значение параметра а:

∑y = na +b∑x

9,639=а·28+0,0423·221,971

28а=0,0423·221,971-9,639

Значение параметра а показывает, что коэффициент регрессии может быть применим для торговых организаций с размером выручки от продажи за год свыше 9 млн. руб.

В целом уравнение регрессии имеет вид: y = 0,009+0,0423·х.

Полученное уравнение связи можно использовать для прогнозирования суммы расходов на оплату труда, если выручка от продажи возрастет и составит, например, 15 млн руб.:

y = 0,009+0,0423·х=0,009+0,0423·15=0,644 млн. руб.

7.3 Критерии оценки адекватности результатов стохастического анализа

При выполнении регрессионного анализа необходимо получить оценки, позволяющие оценить точность модели, вероятность ее существования и обоснованность применения в аналитических целях. Таким образом, качество корреляционно-регрессионного анализа обеспечивается выполнением ряда следующих условий:

1. Однородность исходной информации, которая оценивается в зависимости от относительного ее распределения около среднего значения. Критериями здесь служат (подробно см. тему 3):

– среднеквадратическое отклонение;

– коэффициент вариации;

– коэффициент равномерности;

– закон нормального распределения.

2. Значимость коэффициентов корреляции может быть оценена (наряду с уже указанным выше коэффициентом детерминации) с помощью t-критерия Стьюдента, алгоритм расчета которого при линейной однофакторной связи имеет вид:

.

Если полученное эмпирическое (расчетное) значение критерия (t э) будет больше критического табличного значения (t т), то коэффициент корреляции можно признать значимым.

3. Адекватность (надежность) уравнения регрессии оценивается с помощью F-критерия Фишера, алгоритм расчета которого выглядит следующим образом:

,

где m – число параметров уравнения регрессии; σ 2 y – дисперсия по линии регрессии; σ 2 ост – остаточная дисперсия.

Если эмпирическое значение F-критерия (F э) окажется выше табличного (F т), то уравнение регрессии следует признать адекватным, т. е. правомерным для использования. При этом чем выше величина критерия Фишера, тем точнее в уравнении связи представлена зависимость, сложившаяся между факторными и результативными показателями.

4. Сравнительная сила влияния факторов, оценка которой необходима с целью определения проблемной и наиболее эффективной в перспективе зоны для направления усилий в конкретную область бизнеса. Решение этой задачи может быть осуществимо посредством использования:

а) частных коэффициентов эластичности (Э i), показывающих ожидаемый рост результативного показателя (в %) с возрастанием факторного на 1 %:

б) стандартизированных бета-коэффициентов (β i):

Чем выше бета-коэффициент, тем сильнее воздействие анализируемого фактора на результативный признак.

Тесты для самоконтроля знаний по теме 7

1. Коэффициент корреляции, равный 0, означает:

б) наличие функциональной связи прямо-пропорционального характера;

2. Коэффициент корреляции, равный (-1), означает:

а) наличие функциональной связи обратно пропорционального характера;

б) наличие функциональной связи прямо пропорционального характера;

в) отсутствие связи между фактором и изучаемым результативным показателем.

3. О наличии стохастической зависимости свидетельствует значение коэффициента корреляции, равное:

г) другие значения.

4. Аналитическая задача, которую позволяют решить методы стохастического моделирования:

а) установление факта наличия или отсутствия связи между изучаемыми признаками;

б) выявление общей тенденции изменения изучаемого показателя;

в) выбор оптимального варианта решения проблемы;

г) количественно оценка влияния факторов, находящихся с результативным показателем в функциональной зависимости.

5. Выявить тесноту связи факторных показателей и результативного позволяет:

а) корреляционный анализ;

б) регрессионный анализ;

в) детерминированный анализ.

6. Метод установления аналитического выражения (уравнения) стохастической зависимости между исследуемыми признаками – это … анализ.

7. В ходе регрессионного анализа решается следующая аналитическая задача:

а) нахождение вида зависимости между результативным показателем и независимыми факторами;

б) выявление тесноты связи факторных показателей и результативного;

в) количественная оценка влияния факторов, находящихся с результативным показателем в функциональной зависимости.

8. Для оценки достоверности полученного уравнения регрессии используют:

а) коэффициент детерминации;

б) критерий Фишера;

в) критерий Стьюдента;

г) коэффициент Кенделя;

д) коэффициент долевого участия интенсивных факторов;

е) коэффициент ритмичности;

ж) коэффициент экстенсивности.


9. При линейной однофакторной зависимости уравнение регрессии будет иметь вид:

а) y (х) = а +b·x;

б) y (х) = а +b 1 ·x 1 + b 2* x 2 +…+ b n ·x n ;

в) y (x) = a+в:х.

10. При линейной многофакторной зависимости уравнение регрессии будет иметь вид:

а) y(х) = а +b·x;

б) y (х) = а +b 1 ·x 1 + b 2 ·x 2 +…+ b n ·x n ;

в) y (x) = a+в:х.

11. В уравнении регрессии вида y(х) = а +b·x y – это:

а) результативный показатель;

б) коэффициент регрессии;

в) свободный член.

12. В уравнении регрессии вида y(х) = а +b·x а – это:

а) результативный показатель

б) коэффициент регрессии;

в) свободный член.

13. Коэффициент регрессии (b) в уравнении регрессии вида y(х) = а +b·x показывает:

а) на сколько изменится значение результативного показателя при изменении фактора на единицу;

б) величину влияния неучтенных факторов.


14. Если полученное эмпирическое (расчетное) значение критерия Стьюдента (t э) будет больше критического табличного значения (t т), то коэффициент корреляции … признать значимым.


Международной политике и законодательству. 10. Анализ должен быть эффективным, т.е. затраты на его проведение должны давать многократный эффект. 4. ЭКОНОМИЧЕСКИЙ АНАЛИЗ В ДЕЯТЕЛЬНОСТИ ОВД Содержание, цели и задачи экономико-финансового анализа, проводимого органами внутренних дел В рыночных условиях проведения социально-экономических реформ в деятельности органов внутренних дел по...

Стохастическая модель - это способ финансового моделирования, в котором одна или более переменных в модели имеют стохастическую природу, то есть представляют собой случайный процесс. Следовательно, решением уравнения также оказываются стохастические процессы. В основе стохастического уравнения лежит Броуновское движение.

Он широко используется для прогнозирования того, как фондовые рынки, облигации и свитки будет действовать в будущем. Статистическое моделирование является средством оценки вероятности исходов и предсказания условий в различных ситуациях. Используемые случайные величины, как правило, ограничены историческими данными, такими как последние рыночные доходы. К примеру, при использовании модели в оценке портфеля, несколько моделирований представления портфеля делаются на основе вероятностных распределений отдельных доходностей акций. Статистический анализ результатов может помочь определить вероятность того, что портфель будет предоставлять нужную производительность. Главная цель статистического исследования - узнать свойства популяции по свойствам выборки. Например, сделать прогноз - это значит узнать вероятностное распределение будущих наблюдений популяции по выборке значений из прошлого. Чтобы сделать это, нам необходимо уметь описывать стохастические процессы и временные ряды и знать классы стохастических моделей, пригодных для описания встречающихся на практике ситуаций. Сторонники стохастического моделирования утверждают, что случайность является фундаментальным характеристикой финансовых рынков.

Статистическое моделирование обеспечивает структурированный способ изучения портфеля, с учетом случайных факторов, таких как инфляция или терпимости к риску. Если моделирование показывает низкую вероятность достижения инвестиционных целей, фонд может быть диверсифицированы или уровни взносов изменены.

Статистическое моделирование представляет собой метод представления данных или прогнозирования результатов, учитывающий определенную степень случайности или непредсказуемости. Рынок страховых услуг, например, во многом зависит от стохастического моделирования для прогнозирования будущего состояния компании балансах, так как они могут зависеть от непредсказуемых событий, приводящих к оплате претензий. Многие другие отрасли и области исследования могут извлечь выгоду из стохастического моделирования, таких как статистика, фондовых инвестиций, биологии, лингвистики, и квантовой физики.

Особенно в мире страхования, стохастическое моделирование имеет решающее значение в определении того, какие можно ожидать результаты, и какие вряд ли могут произойти. Вместо того чтобы использовать фиксированные переменные, как в других математических моделях, стохастические включают в себя случайные изменения чтобы предсказать будущие условия и посмотреть, какими они могут быть. Конечно, возможность одного случайного изменения означает, что возможно много исходов. По этой причине, стохастические процессы работают не один раз, а сотни или даже тысячи раз. Большой сбор данных не только выражает возможные результаты, но и ожидаемые колебания.

Другой реальное применение стохастического моделирования, помимо страхования, является производство. Производство рассматривается как стохастический процесс из-за эффекта, как неизвестные или случайные величины могут влиять на конечный результат. Например, завод, который делает определенный продукт всегда знает, что небольшой процент из продуктов не выходят, как задумано, и не могут быть проданы. Это может быть связано с целым рядом факторов, таких как качество входов, рабочее состояние производственного оборудования, а также компетентности сотрудников, и многое другое. То, как эти факторы влияют на результаты, могут быть смоделированы, чтобы предсказать определенный коэффициент ошибок в производстве, для планировки производства.

При создании моделей технологических операций и процессов приходится сталкиваться с такими случаями, когда моделируемое яв- ление не удается описать в виде детерминированных функциональ- ных связей. Причиной этому могут быть как сильное влияние различ- ных случайных возмущений, так и принципиально случайный характер самого явления, т.е. интересующее нас явление не искажено помехами, а вызвано совместным действием различных случайных факторов.

Наиболее типичным случайным явлением являются отказы обо- рудования и элементов автоматики в период их нормальной эксплуа-

тации. С одной стороны, опыт показывает, что рано или поздно, с

большей или меньшей интенсивностью отказывают большинство де- талей или электронных узлов, а с другой - совершенно невозможно предсказать точно момент времени, когда произойдет отказ.

Очевидно, можно говорить лишь о вероятности наступления од- ного или нескольких отказов в определенном интервале времени либо

o том, что время безотказной работы (число отказов равно нулю) не

превысит определенного значения.

Аналогичная постановка вопроса справедлива применительно к погрешностям измерения параметра. В силу целого ряда случайных

факторов невозможно предсказать, какова будет погрешность при

конкретном измерении, хотя ясно, что она не бывает больше какого- то значения и что существует понятие средней погрешности по конечной совокупности измерений. Случайным можно также представить отклонение параметров заготовок и даже готовых деталей от нормативных. При этом для годных изделий эти отклонения находятся в пределах допусков, для бракованных превышают допуск.

В рассмотренных случаях, особенно при взаимодействии и взаи- мовлиянии различных случайных факторов, поведение интересующе- го нас параметра и его значение не могут быть представлены как функция взаимодействия средних значений определяющих его факто- ров. Конечный результат должен быть получен в виде случайной ве- личины как результат взаимодействия случайных факторов в повто- ряющихся реализациях процесса. Только после статистической обработки полученных результатов можно говорить об оценке сред- него значения и разброса. Такая модель процесса в отличие от детер- минированной называется стохастической (случайной).

Стохастические модели также отражают объективные законо- мерности, присущие данному процессу, однако представление их в

виде детерминированных функций либо невозможно, либо нецелесо-

образно на данном этапе. Для их представления используется аппарат случайных функций, когда случайные явления и процессы характери- зуются случайными величинами, подчиняющимися вероятностным законам.


Статистически устойчивые (достоверные) результаты модели- рования случайных явлений и процессов могут быть получены лишь по достаточно большому числу реализаций (опытов), причем, чем больше разброс значений случайной величины, тем большее число реализаций требуется. Реально такое моделирование возможно лишь с использованием быстродействующих ЭВМ.

Для этой цели ЭВМ должна иметь возможность:

Генерировать последовательность случайных чисел с за- данными законом распределения и параметрами (матема-

тическое ожидание, дисперсия и т.п.);

Вычислять вероятность наступления случайного события, подчиняющегося определенному закону, в заданном ин-

тервале времени;

Воспроизводить факт наступления случайного события и т.д.

Во всех указанных случаях необходимо знать закон распределе- ния случайной величины или события и его параметры. Необходимые

для этого данные получают, проводя натурный эксперимент по реализации подобного явления. Статистическая обработка такого эксперимента позволяет не только выявить статистические закономерности случайного явления, но и оценить достоверность результатов в зависимости от объема эксперимента (числа реализаций).

Начальным этапом обработки экспериментальных данных явля- ется построение вариационного ряда и гистограммы. Для этого фик- сируется ряд значений дискретной случайной величины х (например, число бракованных деталей за одну смену) в течение п смен. Сово- купность значений называется выборкой или статистическим рядом.

Располагая разные измеренные значения в порядке возрастания, получаем вариационный ряд. Далее составляем таблицу частот, в ко- торой каждому значению из вариационного ряда хi, ставится в соот- ветствие экспериментальная частота наблюдавшегося явления:




Число смен, когда было хi , бракованных деталей;

Общее число смен, когда проводились наблюдения.


Если случайная величина непрерывна (погрешность измерения), то ее экспериментальные значения представляются в виде интерваль-


ной таблицы частот, в которой указаны интервалы


сi ci +1 значений


случайной величины, а также, как и для дискретной величины, часто-

ты попадания ее в этот интервал




- число значений случайной величины, не выходящих


за пределы i -го интервала;


величины.


Общее число зафиксированных значений случайной


По данным интервальной таблицы строят гистограмму, пред- ставляющую собой ряд сопряженно-расположенных на горизонталь- ной оси прямоугольников, основание которых равно интервалу


сi ci +1


значений случайной величины, а площадь равна



Построив графики по данным таблицы частот или гистограммы, можно по их виду предложить гипотезу о соответствии данных опыта тому или иному закону. После этого проводится проверка степени со- ответствия экспериментальных данных предполагаемому закону. Проверка производится с использованием различных критериев со- гласия. Наиболее распространенным является критерий χ2 (хи- квадрат) Пирсона.

 

Возможно, будет полезно почитать: