Молекула днк состоит из двух. Наследственная информация: хранение и передача. Генетический код. Цепочка ДНК. Что такое хромосома? Половые хромосомы

Многих людей всегда интересовало, почему некоторые признаки, имеющиеся у родителей, передаются ребенку (например, цвет глаз, волос, форма лица и другие). Наукой было доказано, что данная передача признака зависит от генетического материала, или ДНК.

Что такое ДНК?

Нуклеотид

Как было сказано, основной структурной единицей дезоксирибонуклеиновой кислоты является нуклеотид. Это сложное образование. Состав нуклеотида ДНК следующий.

По центру нуклеотида находится пятикомпонентный сахар (в ДНК в отличие от РНК, в которой содержится рибоза). К нему присоединяется азотистое основание, которых выделяют 5 типов: аденин, гуанин, тимин, урацил и цитозин. Кроме того, каждый нуклеотид имеет в своем составе и остаток фосфорной кислоты.

В состав ДНК входят только те нуклеотиды, которые имеют указанные структурные единицы.

Все нуклеотиды расположены в виде цепи и следуют друг за другом. Группируясь по триплетам (по три нуклеотида), они образуют последовательность, в которой каждый триплет соответствует определенной аминокислоте. В результате образуется цепь.

Они объединяются между собой за счет связей азотистых оснований. Основная связь между нуклеотидами параллельных цепей - водородная.

Нуклеотидные последовательности являются основой генов. Нарушение в их структуре ведет к сбою в синтезе белков и проявлению мутаций. В состав ДНК входят одинаковые гены, определяющиеся практически у всех людей и отличающие их от других организмов.

Модификация нуклеотида

В некоторых случаях для более стабильной передачи того или иного признака используется модифицирование азотистого основания. Химический состав ДНК изменяется за счет присоединения метильной группы (СН3). Подобная модификация (на одном нуклеотиде) позволяет стабилизировать генную экспрессию и передачу признаков дочерним клеткам.

Подобное “улучшение” структуры молекулы никоим образом не сказывается на объединении азотистых оснований.

Данная модификация используется и при инактивации Х-хромосомы. В результате этого образуются тельца Барра.

При усиленном канцерогенезе анализ ДНК показывает, что цепочка нуклеотидов была подвержена метилированию на многих основаниях. В проведенных наблюдениях было замечено, что источником мутации обычно служит метилированный цитозин. Обычно при опухолевом процессе деметилирование может способствовать остановке процесса, но за счет своей сложности данная реакция не проводится.

Структура ДНК

В строении молекулы выделяют два типа структуры. Первый тип - линейная последовательность, образованная нуклеотидами. Их построение подчиняется некоторым законам. Запись нуклеотидов на молекуле ДНК начинается с 5’-конца и заканчивается 3’-концом. Вторая цепь, расположенная напротив, строится таким же образом, только в пространственном отношении молекулы находятся одна напротив другой, причем 5’-конец одной цепи расположен напротив 3’-конца второй.

Вторичная структура ДНК - спираль. Обуславливается наличием водородных связей между располагающимися друг напротив друга нуклеотидами. Водородная связь образуется между комплементарными азотистыми основаниями (например, напротив аденина первой цепи может находиться только тимин, а напротив гуанина - цитозин либо урацил). Подобная точность обусловлена тем, что построение второй цепи происходит на основе первой, поэтому между азотистыми основаниями наблюдается точное соответствие.

Синтез молекулы

Каким же образом образуется молекула ДНК?

В цикле ее образования выделяют три стадии:

  • Рассоединение цепей.
  • Присоединение синтезирующих единиц к одной из цепей.
  • Достраивание второй цепи по принципу комплементарности.

На стадии разъединения молекулы основную роль играют ферменты - ДНК-гиразы. Данные ферменты ориентированы на разрушение водородных связей между цепями.

После расхождения цепей в дело вступает основной синтезирующий фермент - ДНК-полимераза. Ее присоединение наблюдается на участке 5’. Далее данный фермент движется в сторону 3’-конца, попутно присоединяя необходимые нуклеотиды с соответствующими азотистыми основаниями. Дойдя до определенного участка (терминатора) на 3’-конце, полимераза отсоединяется от исходной цепи.

После того как образовалась дочерняя цепь, между основаниями образуется водородная связь, которая и скрепляет вновь образованную молекулу ДНК.

Где можно найти данную молекулу?

Если углубиться в строение клеток и тканей, то можно увидеть, что ДНК в основном содержится в отвечает за образование новых, дочерних, клеток или их клонов. При этом находящаяся в нем, разделяется между новообразованными клетками равномерно (образуются клоны) или по частям (часто можно наблюдать такое явление при мейозе). Поражение ядра влечет за собой нарушение образования новых тканей, что приводит к мутации.

Кроме того, особый тип наследственного материала содержится в митохондриях. В них ДНК несколько отличается от таковой в ядре (митохондриальная дезоксирибонуклеиновая кислота имеет кольцевидную форму и выполняет несколько другие функции).

Сама молекула может выделяться из любых клеток организма (для исследования чаще всего используют мазок с внутренней стороны щеки либо кровь). Отсутствует генетический материал только в отшелушивающемся эпителии и некоторых клетках крови (эритроцитах).

Функции

Состав молекулы ДНК обуславливает выполнение ею функции передачи информации из поколения в поколение. Это происходит за счет синтеза определенных белков, обуславливающих проявление того или иного генотипического (внутреннего) или фенотипического (внешнего - например, цвет глаз или волос) признака.

Передача информации осуществляется за счет реализации ее из генетического кода. На основании сведений, зашифрованных в генетическом коде, происходит выработка специфических информационных, рибосомальных и транспортных РНК. Каждая из них отвечает за определенное действие - информационная РНК используется для синтеза белков, рибосомальная участвует в сборке белковых молекул, а транспортная образует соответствующие белки.

Любой сбой в их работе или изменение структуры приводят к нарушению выполняемой функции и появлению нетипичных признаков (мутаций).

ДНК-тест на отцовство позволяет определить наличие родственных признаков между людьми.

Генетические тесты

Для чего в настоящее время может использоваться исследование генетического материала?

Анализ ДНК используется для определения многих факторов или изменений в организме.

В первую очередь исследование позволяет определить наличие врожденных, передающихся по наследству заболеваний. К таким болезням можно отнести синдром Дауна, аутизм, синдром Марфана.

Для определения родственных связей также можно исследовать ДНК. Тест на отцовство уже давно получил широкое распространение во многих, в первую очередь юридических, процессах. Данное исследование назначают при определении генетического родства между внебрачными детьми. Часто этот тест сдают претенденты на наследство при возникновении вопросов со стороны органов власти.

Экология познания. Наука и открытия: Что такое жизнь? Этот вопрос стал движущей силой развития генетики (от греческого genetikos - «относящийся к рождению, происхождению») - науки о происхождении жизни, в центре внимания которой вот уже более 50 лет находится молекула ДНК.

Что такое жизнь? Этот вопрос стал движущей силой развития генетики (от греческого genetikos - «относящийся к рождению, происхождению») - науки о происхождении жизни, в центре внимания которой вот уже более 50 лет находится молекула ДНК.

Открытие, которое перевернуло мир

«Мы только что открыли секрет жизни!» - так 28 февраля 1953 года Френсис Крик и Джеймс Уотсон сообщили о своем открытии структуры ДНК. Что нового привнесло оно в науки о жизни? До этого было известно, что ДНК - большая молекула, в которой с помощью «четырехбуквенного алфавита» записана информация о строении и свойствах живых существ. Но оставалось непонятным, как эта информация передается из поколения в поколение и материализуется в эти самые структуры и свойства, а также какова пространственная структура ДНК.

Разгадка структуры ДНК помогла ученым понять механизмы ее копирования и материализации. ДНК состоит из двух цепей, которые комплементарны (дополнительны) друг другу. Копирование ДНК происходит за счет достраивания на каждой исходной цепи ДНК, как на матрице, дополнительной к ней копии. Так из одной двойной спирали ДНК получаются две абсолютно идентичные ей двойные спирали, что и необходимо для сохранения генетической информации при делении материнской клетки на две дочерние. Матричный принцип лежит также в основе поэтапной материализации генетической информации: на одной из цепей ДНК образуется комплементарная ей цепь другой информационной молекулы - РНК, которая, в свою очередь, служит матрицей для синтеза белков, от количества и качества которых зависят структуры и свойства конкретного организма.

Насколько это открытие значимо для постижения тайны жизни? С одной стороны, знания структуры ДНК явно недостаточно для того, чтобы ответить на вопрос «что такое жизнь?». Но с другой - именно это открытие сделало «научным» очень древний и очень важный вопрос о взаимосвязи потенциального и проявленного - на примере связи информации о структурах и свойствах организма с самими структурами и свойствами. И не только поставило этот вопрос, но и дало ключ к ответу на него. Этот ключ - матричный принцип, принцип комплементарности.

Путь от гена до признака

Что означает классическая фраза из учебника: «ДНК - носитель генетической информации»? Как генетическая информация связана со структурой ДНК? Каким образом информация воплощается в конкретных свойствах организма? Если за точку отсчета генетической информации принять структуру ДНК и далее следовать структурной модели, то путь от гена до признака будет выглядеть так: в последовательности ДНК зашифрованы все свойства организма; линейная структура конкретного гена однозначно определяет линейную структуру соответствующего ему белка, которая, в свою очередь, однозначно определяет роль этого белка в формировании того или иного признака.

Другими словами, «ДНК рождает РНК; РНК рождает белок, а белок рождает нас с вами» (Ф. Крик). Если это верно, то для того, чтобы изменить тот или иной признак (например, вылечить болезнь, имеющую генетические корни), достаточно установить соответствующую ему последовательность участка ДНК и исправить ее.

Но так ли все просто? Достаточно ли знаний (хотя они бесспорно верны и необходимы!) о структурных соответствиях на пути от гена к признаку, для того чтобы понять и воспроизвести этот путь?

Последние достижения генетики показали, что недостаточны. В 2003 году в рамках проекта «Геном человека» была полностью определена линейная структура ДНК человека (и многих других простых и сложных организмов). Как сказал один из ученых, «прочитаны все буквы, которыми написана толстая книга, теперь еще понять бы слова и их смысл».

Выяснилось, что собственно генов (участков ДНК, кодирующих белки) у человека около 30 000, и это лишь 1–3% всей ДНК! Столько же генов у растения Arabidopsis taliana и рыбы фугу. Более того, 99% генов человека совпадают с генами мыши, то есть человек имеет всего 300 генов, которых нет у мыши. (Трудно представить, что у нас и мышей одинаковы еще и 99% признаков!)

Дальше - больше. Оказалось, что однозначная взаимосвязь между геном и белком существует только у бактерий. А у человека возможно образование многих белков на основании одного гена (максимально известное сегодня число разных белков, кодируемых одним геном, - 40 000!) и возникновение многих функций у одного белка. Получается, что путь от потенциального к проявленному, от генетической информации к признаку отнюдь не линейный; что каждый признак является результатом сложных взаимодействий многих генов и их продуктов-белков; что само понятие «ген» из-за своей неоднозначности вряд ли может служить «отправным пунктом» этого пути.

Взаимодействие структур

Тело человека состоит из 10 в 14-ой степени клеток. Все они имеют абсолютно одинаковую ДНК, но существенно различаются по форме, размерам и своим задачам. Разрешение этого парадокса - в избирательном считывании генетической информации. В каждой клетке активными являются только те гены, которые ей в данный момент необходимы.

Избирательность обеспечивают специальные гены-регуляторы, которые разрешают или запрещают считывание информации с того или иного участка ДНК. Активность гена зависит и от его окружения в пространстве клеточного ядра. Смена окружения, вызванная перемещением самого гена или кого-то из его соседей, способна изменить его активность («выключить» или «включить» ген).

Например, в геноме человека есть масса потенциально опасных вирусных генов и протоонкогенов (способных вызвать раковое перерождение клетки). Они могут долгое время (и всю жизнь) вести себя вполне мирно и даже работать на благо клетки, до тех пор пока перемещение их самих или кого-то из окружения не выявит в этих генах агрессивные потенциалы. К счастью, могут произойти другие перемещения, которые утихомирят «бунтовщика» или включат защитные механизмы.

Итак, носитель генетической информации переместился с уровня гена (конкретного участка ДНК) на эпигенетический (от латинского «над», «сверх») уровень взаимодействия генов между собой и с другими структурами ядра клетки (99% негенной ДНК и белками). Предположим, наука расшифрует механизм этого взаимодействия. Приведет ли это к раскрытию тайны жизни? Жизнь - это только лишь структура? А если нет, стоит ли в поисках разгадки тайны жизни ограничиваться взаимодействием структур?

Кто сторожит сторожа?

Как из единственной клетки в результате 46 делений получается не бесформенная масса из 1014 клеток, а весьма характерное тело каждого из нас? Последовательно удваиваясь, клетки не только сами становятся разными, но еще и формируют разные части тела в нужное время и в нужном месте. Что управляет организацией клеток во времени и пространстве?

Целое, которое качественно больше простой суммы составляющих его частей-клеток. И это не противоречит тому, что организм образуется из одной клетки, - вопрос в том, что для этой клетки воплощает «волю целого». Поиски подобного упорядочивающего фактора вылились в начале XX века в концепцию морфогенетического поля. Ее основоположником стал русский ученый А.Г. Гурвич. Когда Гурвич работал над теорией поля, молекула ДНК считалась составной частью хромосом, и ей не придавали особого значения.

В 1944 году ученый опубликовал свой труд «Теория биологического поля». Этот год стал судьбоносным для всей генетики, определив путь ее развития на несколько десятилетий вперед. В центре внимания ученых оказалась молекула ДНК, поскольку было доказано, что именно ей принадлежит ведущая роль в передаче наследственной информации. Не за горами был и 1953-й... В результате все свое внимание наука сосредоточила на структуре ДНК, которую фактически стала отождествлять с переносимой ею информацией, а теория биологического поля оказалась не в почете. Но исследования в этой области продолжались, и все эти годы два пути познания тайны жизни шли параллельно...

Переход в новое тысячелетие изменил соотношение сил в науках о жизни. Все больше ученых приходят к тому, что структурный ключ в познании живого необходим, но недостаточен; что разные подходы не исключают друг друга, а образуют объединенный путь научного поиска; что по сути своей структурный подход и теория поля комплементарны.

Вспомним: именно предположение о комплементарности цепей ДНК стало ключом к расшифровке ее структуры, а само открытие 1953 года оказалось возможным благодаря комплементарности усилий представителей разных областей науки - физиков, химиков, биологов. Может быть, объединенная наука нового тысячелетия не только окончательно примирит разные научные подходы (например, структурный и полевой), но и обратится к плодам «ненаучного» пути познания тайны жизни - тысячелетней мудрости человечества, - «ненаучного», поскольку этот путь уходит корнями в те времена, когда науки не было и в помине.

Обращение к источникам древней мудрости способно дать науке ключи от двери, за которой скрыта тайна. Но чтобы это произошло, столь разные пути познания должны где-то «пересечься». Одним из таких «перекрестков» может стать концепция формообразующего поля (биологического, морфогенетического, информационного), выросшая на почве современной науки и восходящая к явлениям, рассматривавшимся в древних источниках.

Последние говорят о том, что человек состоит из нескольких тел, или принципов, которые не являются отдельными, независимыми частями, а взаимопроникают и взаимоформируют друг друга; что видимое, плотное, физическое тело является проводником, носителем более тонкоматериальных тел, которые с его помощью проявляются в физическом мире и взаимодействуют с ним; что «сборкой» - формированием физического тела из элементов физической материи - управляет самое «плотное» из этих тел, астральное тело-прообраз (план, матрица).

Современная наука знает, что каждая вновь образовавшаяся клетка участвует в формировании организма согласно индивидуальной «инструкции» (активные, или включенные, гены) и что у родителя и у потомков этой клетки могут быть совсем другие «инструкции». Но что и как согласует переключения индивидуальных «программ» развития миллиардов клеток, пока не ясно.

Теория биологического поля предполагает, что согласование есть функция целого, которое и является тем самым полем, матрицей или моделью; что каждая вновь образовавшаяся клетка с помощью собственного генетического аппарата подключается к единому «плану» развития организма, получает оттуда индивидуальные «инструкции» и реализует их в рамках собственной программы поведения.

Получается, что генетический аппарат клетки состоит, как минимум, из трех функциональных блоков: воспринимающей «антенны», «пульта управления» активностью генов и «исполнительной» части - генов, ответственных за образование конкретных белков. Вспомним, что на долю генов приходится всего 1–2% от всей клеточной ДНК. В оставшихся 98–99% ДНК уже обнаружены структуры, относящиеся ко второму «управляющему блоку». А что играет роль «антенны»? Где происходит «встреча двух миров» - информационного поля и генетических структур, воплощающих эту информацию в конкретное физическое тело?

Почему бы не предположить, что роль антенны, способной улавливать, трансформировать и передавать сигналы волновой природы, тоже играет ДНК? К этому располагает и спиральная структура «молекулы жизни» (многие технические антенны имеют форму спирали), и такие ее свойства, как способность проводить электрический ток, возможность резонансного возбуждения продольных колебаний под действием радиоволн, а также способность к лазерной генерации света после предварительной «накачки».

Если ДНК может работать на прием информации, обеспечивающей жизненную активность клеток, то ей вовсе не обязательно постоянно хранить эту информацию в своей структуре. Как, например, мозгу человека, чтобы успешно управлять системами жизнеобеспечения организма, не обязательно быть «вместилищем» разума, а достаточно играть роль посредника между сознанием и телом: он воспринимает информацию из плана сознания и «переводит» ее на язык управления телом.

И ясно, почему в случае повреждений структуры ДНК (или мозговых структур) страдает физическое тело. Ведь всем известно, что при неисправности в телевизоре хотя бы одной детали изображение на его экране сильно искажается, а если телевизор лишить антенны или выключить его из сети, на экране вообще ничего не появится.

ДНК - связующее звено между «моделью» физического тела и ее конкретным воплощением. Мозг - посредник между разумом и телом. Разум связывает жизнь и форму ее проявления и позволяет жизни, заключенной в форме, познавать саму себя. С помощью этого замечательного инструмента человек имеет возможность изучать окружающий мир и находить в нем ключи к познанию своего внутреннего мира. Так рождается объединенный путь, ведущий к познанию тайны жизни. Ибо человек есть величайшая из тайн - тайна взаимосвязи земли и неба. опубликовано

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Присоединяйтесь к нам в

Молекула ДНК состоит из двух нитей, образующих двойную спираль. Впервые ее структура была расшифрована Френсисом Криком и Джеймсом Уотсоном в 1953 году.

Поначалу молекула ДНК, состоящая из пары нуклеотидных, закрученных друг вокруг друга цепочек, порождала вопросы о том, почему именно такую форму она имеет. Ученые назвали этот феномен комплементарностью, что означает, что в ее нитях друг напротив друга могут находиться исключительно определенные нуклеотиды. К примеру, напротив тимина всегда стоит аденин, а напротив цитозина - гуанин. Эти нуклеотиды молекулы ДНК и называются комплементарными.

Схематически это изображается так:

Т — А

Ц — Г

Данные пары образуют химическую нуклеотидную связь, которая определяет порядок расстановки аминокислот. В первом случае она немного слабее. Связь между Ц и Г более прочная. Некомплементарные нуклеотиды между собой пары не образуют.


О строении

Итак, строение молекулы ДНК особое. Такую форму она имеет неспроста: дело в том, что количество нуклеотидов очень большое, и для размещения длинных цепочек необходимо много места. Именно по этой причине цепочкам присуще спиральное закручивание. Это явление названо спирализацией, оно позволяет нитям укорачиваться где-то в пять-шесть раз.

Некоторые молекулы такого плана организм использует очень активно, другие - редко. Последние, помимо спирализации, подвергаются еще и такой «компактной упаковке», как суперспирализация. И тогда длина молекулы ДНК уменьшается в 25-30 раз.

Что такое «упаковка» молекулы?

В процессе суперспирализации задействуются гистоновые белки. Они имеют структуру и вид катушки для ниток или стержня. На них и наматываются спирализованные нити, которые становятся сразу «компактно упакованными» и занимают мало места. Когда возникает необходимость использования той или иной нити, она сматывается с катушки, к примеру, гистонового белка, и спираль раскручивается в две параллельные цепочки. Когда молекула ДНК пребывает именно в таком состоянии, с нее можно считывать необходимые генетические данные. Однако есть одно условие. Получение информации возможно, только если структура молекулы ДНК имеет раскрученный вид. Хромосомы, доступные для считывания, называются эухроматинами, а если они суперсипирализованы, то это уже гетерохроматины.

Нуклеиновые кислоты

Нуклеиновые кислоты, как и белки, являются биополимерами. Главная функция - это хранение, реализация и передача наследственной (генетической информации). Они бывают двух типов: ДНК и РНК (дезоксирибонуклеиновые и рибонуклеиновые). Мономерами в них выступают нуклеотиды, каждый из которых имеет в своем составе остаток фосфорной кислоты, пятиуглеродный сахар (дезоксирибоза/рибоза) и азотистое основание. В ДНК код входит 4 вида нуклеотидов - аденин (А)/ гуанин (Г)/ цитозин (Ц)/ тимин (Т). Они отличаются по содержащемуся в их составе азотистому основанию.

В молекуле ДНК количество нуклеотидов может быть огромным - от нескольких тысяч до десятков и сотен миллионов. Рассмотреть такие гигантские молекулы можно через электронный микроскоп. В этом случае удастся увидеть двойную цепь из полинуклеотидных нитей, которые соединены между собой водородными связями азотистых оснований нуклеотидов.

Исследования

В ходе исследований ученые обнаружили, что виды молекул ДНК у разных живых организмов отличаются. Также было установлено, что гуанин одной цепи может связываться только лишь с цитозином, а тимин - с аденином. Расположение нуклеотидов одной цепи строго соответствует параллельной. Благодаря такой комплементарности полинуклеотидов молекула ДНК способна к удвоению и самовоспроизведению. Но сначала комплементарные цепи под воздействием специальных ферментов, разрушающих парные нуклеотиды, расходятся, а затем в каждой из них начинается синтез недостающей цепи. Это происходит за счет имеющихся в большом количестве в каждой клетке свободных нуклеотидов. В результате этого вместо «материнской молекулы» формируются две «дочерние», идентичные по составу и структуре, и ДНК-код становится исходным. Данный процесс является предшественником клеточного деления. Он обеспечивает передачу всех наследственных данных от материнских клеток дочерним, а также всем последующим поколениям.

Как читается генный код?

Сегодня вычисляется не только масса молекулы ДНК - можно узнать и более сложные, ранее не доступные ученым данные. Например, можно прочитать информацию о том, как организм использует собственную клетку. Конечно, сначала сведения эти находятся в закодированном виде и имеют вид некой матрицы, а потому ее необходимо транспортировать на специальный носитель, коим выступает РНК. Рибонуклеиновой кислоте под силу просачиваться в клетку через мембрану ядра и уже внутри считывать закодированную информацию. Таким образом, РНК - это переносчик скрытых данных из ядра в клетку, и отличается она от ДНК тем, что в её состав вместо дезоксирибозы входит рибоза, а вместо тимина - урацил. Кроме того, РНК одноцепочная.

Синтез РНК

Глубокий анализ ДНК показал, что после того как РНК покидает ядро, она попадает в цитоплазму, где и может быть встроена как матрица в рибосомы (специальные ферментные системы). Руководствуясь полученной информацией, они могут синтезировать соответствующую последовательность белковых аминокислот. О том, какую именно разновидность органического соединения необходимо присоединить к формирующейся белковой цепи, рибосома узнает из триплетного кода. Каждой аминокислоте соответствует свой определенный триплет, который ее и кодирует.

После того как формирование цепочки завершено, она приобретает конкретную пространственную форму и превращается в белок, способный осуществлять свои гормональные, строительные, ферментные и иные функции. Для любого организма он является генным продуктом. Именно из него определяются всевозможные качества, свойства и проявления генов.

Гены

В первую очередь процессы секвенирования разрабатывались с целью получения информации о том, сколько генов имеет структура молекулы ДНК. И, хотя исследования позволили ученым далеко продвинуться в этом вопросе, узнать точное их количество пока что не представляется возможным.

Еще несколько лет назад предполагалось, что молекулы ДНК содержат приблизительно 100 тыс. генов. Немного погодя цифра уменьшилась до 80 тысяч, а в 1998 г. генетиками было заявлено, что в одной ДНК присутствует только 50 тысяч генов, которые являются всего лишь 3 % всей длины ДНК. Но поразили последние заключения генетиков. Теперь они утверждают, что в геном входит 25-40 тысяч упомянутых единиц. Получается, что за кодирование белков отвечает только 1,5 % хромосомной ДНК.

На этом исследования не прекратились. Параллельная команда специалистов генной инженерии установила, что численность генов в одной молекуле составляет именно 32 тысячи. Как видите, получить окончательный ответ пока что невозможно. Слишком много противоречий. Все исследователи опираются только на свои полученные результаты.

Было ли эволюционирование?

Несмотря на то что нет никаких доказательств эволюции молекулы (так как строение молекулы ДНК хрупкое и имеет малый размер), все же учеными было высказано одно предположение. Исходя из лабораторных данных, они озвучили версию следующего содержания: молекула на начальном этапе своего появления имела вид простого самовоспроизводящегося пептида, в состав которого входило до 32 аминокислот, содержащихся в древних океанах.

После саморепликации, благодаря силам естественного отбора, у молекул появилась способность защищать себя от воздействия внешних элементов. Они стали дольше жить и воспроизводиться в больших количествах. Молекулы, нашедшие себя в липидном пузыре, получили все шансы для самовоспроизведения. В результате череды последовательных циклов липидные пузыри приобрели форму клеточных мембран, а уже далее - всем известных частиц. Следует отметить, что сегодня любой участок молекулы ДНК представляет собой сложную и четко функционирующую структуру, все особенности которой учеными до конца еще не изучены.

Современный мир

Недавно ученые из Израиля разработали компьютер, которому под силу выполнять триллионы операций в секунду. Сегодня это самая быстрая машина на Земле. Весь секрет заключается в том, что инновационное устройство функционирует от ДНК. Профессора говорят, что в ближайшей перспективе такие компьютеры смогут даже вырабатывать энергию.

Специалисты из института Вейцмана в Реховоте (Израиль) год назад заявили о создании программируемой молекулярной вычислительной машины, состоящей из молекул и ферментов. Ими они заменили микрочипы из кремния. К настоящему времени команда еще продвинулась вперед. Теперь обеспечить компьютер необходимыми данными и предоставить нужное топливо может всего одна молекула ДНК.

Биохимические «нанокомпьютеры» - это не выдумка, они уже существуют в природе и проявлены в каждом живом существе. Но зачастую они не управляются людьми. Человек пока что не может оперировать геном какого-либо растения, чтобы рассчитать, скажем, число «Пи».

Идея об использовании ДНК для хранения/обработки данных впервые посетила светлые головы ученных в 1994 году. Именно тогда для решения простой математической задачи была задействована молекула. С того момента ряд исследовательских групп предложил различные проекты, касающиеся ДНК-компьютеров. Но здесь все попытки основывались только на энергетической молекуле. Невооруженным глазом такой компьютер не увидишь, он имеет вид прозрачного раствора воды, находящегося в пробирке. В нем нет никаких механических деталей, а только триллионы биомолекулярных устройств - и это только в одной капле жидкости!

ДНК человека

Какой вид у ДНК человека, людям стало известно в 1953 году, когда ученые впервые смогли продемонстрировать миру двухцепочную модель ДНК. За это Кирк и Уотсон получили Нобелевскую премию, так как данное открытие стало фундаментальным в 20 веке.

Со временем, конечно, доказали, что не только так, как в предложенном варианте, может выглядеть структурированная молекула человека. Проведя более детальный анализ ДНК, открыли А-, В- и левозакрученную форму Z-. Форма А- зачастую является исключением, так как образуется только в том случае, если наблюдается недостаточность влаги. Но это возможно разве что при лабораторных исследованиях, для естественной среды это аномально, в живой клетке такой процесс происходить не может.

Форма В- является классической и известна как двойная правозакрученная цепь, а вот форма Z- не только закручена в обратном направлении, влево, но также имеет более зигзагообразный вид. Учеными выделена еще и форма G-квадруплекс. В ее структуре не 2, а 4 нити. По мнению генетиков, возникает такая форма на тех участках, где имеется избыточное количество гуанина.

Искусственная ДНК

Сегодня уже существует искусственная ДНК, являющаяся идентичной копией настоящей; она идеально повторяет структуру природной двойной спирали. Но, в отличие от первозданного полинуклеотида, в искусственном - всего два дополнительных нуклеотида.

Так как дубляж создавался на основе информации, полученной в ходе различных исследований настоящей ДНК, то он также может копироваться, самовоспроизводиться и эволюционировать. Над созданием такой искусственной молекулы специалисты работали около 20 лет. В результате получилось удивительное изобретение, которое может пользоваться генетическим кодом так же, как и природная ДНК.

К четырем имеющимся азотистым основаниям генетики добавили дополнительные два, которые создали методом химической модификации естественных оснований. В отличие от природной, искусственная ДНК получилась достаточно короткой. Она содержит только 81 пару оснований. Тем не менее она также размножается и эволюционирует.

Репликация молекулы, полученной искусственным путем, имеет место благодаря полимеразной цепной реакции, но пока что это происходит не самостоятельно, а через вмешательство ученых. В упомянутую ДНК они самостоятельно добавляют необходимые ферменты, помещая ее в специально подготовленную жидкую среду.

Конечный результат

На процесс и конечный итог развития ДНК могут влиять различные факторы, например мутации. Это обуславливает обязательное изучение образцов материи, чтобы результат анализов был достоверным и надежным. В качестве примера можно привести тест на отцовство. Но не может не радовать, что такие казусы, как мутация, встречаются редко. Тем не менее образцы материи всегда перепроверяют, чтобы на основе анализа получить более точную информацию.

ДНК растений

Благодаря высоким технологиям секвенирования (HTS) совершена революция и в области геномики - выделение ДНК из растений также возможно. Конечно, получение из растительного материала молекулярной массы ДНК высокого качества вызывает некоторые трудности, обусловленные большим числом копий митохондрий и хлоропластов ДНК, а также высоким уровнем полисахаридов и фенольных соединений. Для выделения рассматриваемой нами структуры в этом случае задействуются самые разные методы.

Водородная связь в ДНК

За водородную связь в молекуле ДНК отвечает электромагнитное притяжение, создаваемое между положительно заряженным атомом водорода, который присоединен к электроотрицательному атому. Данное дипольное взаимодействие не подпадает под критерий химической связи. Но она может осуществиться межмолекулярно либо в различных частях молекулы, т. е. внутримолекулярно.

Атом водорода присоединяется к электроотрицательному атому, являющемуся донором данной связи. Электроотрицательным атомом может быть азот, фтор, кислород. Он - путем децентрализации - привлекает к себе электронное облако из водородного ядра и делает атом водорода заряженным (частично) положительно. Так как размер Н маленький, по сравнению с другими молекулами и атомами, заряд получается также малым.

Расшифровка ДНК

Прежде чем расшифровать молекулу ДНК, ученные сначала берут огромное количество клеток. Для наиболее точной и успешной работы их необходимо около миллиона. Полученные в процессе изучения результаты постоянно сравнивают и фиксируют. Сегодня расшифровка генома - это уже не редкость, а доступная процедура.

Конечно, расшифровывать геном одной клетки - это нецелесообразное занятие. Полученные в ходе таких исследований данные для ученых не представляют никакого интереса. Но важно понимать, что все существующие на данный момент методы декодировки, несмотря на их сложность, недостаточно эффективны. Они позволят считывать только 40-70 % ДНК.

Однако гарвардские профессора недавно заявили о способе, благодаря которому можно расшифровать 90 % генома. Методика основана на добавлении к выделенным клеткам молекул-праймеров, с помощью них и начинается репликация ДНК. Но даже и этот метод нельзя считать успешным, его еще нужно доработать, прежде чем открыто использовать в науке.

Дезоксирибонуклеиновая кислота - полимер, состоит из нуклеотидов.


Нуклеотид ДНК состоит из

  • азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)
  • моносахара дезоксирибозы
  • фосфорной кислоты

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получается полинуклеотидная цепь .


Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями по правилу комплементарности : напротив аденина всегда стоит тимин, напротив цитозина - гуанин (они подходят друг другу по форме и числу водородных связей - между А и Т две связи, между Ц и Г - 3). Получается двойная цепь ДНК, она скручивается в двойную спираль .

Функция ДНК

ДНК входит в состав хромосом, хранит наследственную информацию (о признаках организма, о первичной структуре белков).


ДНК способна к самоудвоению (репликации, редупликации). Самоудвоение происходит в интерфазе перед делением. После удвоения каждая хромосома состоит из двух хроматид, которые во время будущего деления превратятся в дочерние хромосомы. Благодаря самоудвоению каждая из будущих дочерних клеток получит одинаковую наследственную информацию.

Отличия РНК от ДНК по строению

  • рибоза вместо дезоксирибозы
  • нет тимина, вместо него урацил
  • одноцепочечная

Виды РНК

  • информационная (матричная) РНК
    • переносит информацию о строении белка из ядра (от ДНК) в цитоплазму (к рибосоме);
    • меньше всего в клетке;
  • транспортная РНК
    • переносит аминокислоты к рибосоме;
    • самая маленькая, имеет форму клеверного листа;
  • рибосомная РНК
    • входит в состав рибосом;
    • самая большая по размерам и количеству

Задачи на правило комплементарности

Тимина в ДНК столько же, сколько аденина, остальное (до 100%) приходится на цитозин и гуанин, их тоже поровну. Например: если гуанина 15%, значит цитозина тоже 15%, итого 30%, значит, на аденин и тимин приходится 100-30=70%, следовательно аденина 70/2=35% и тимина тоже 35%

Выберите один, наиболее правильный вариант. Благодаря какому процессу в ходе митоза образуются дочерние клетки с набором хромосом, равным материнскому
1) образования хроматид
2) спирализации хромосом
3) растворения ядерной оболочки
4) деления цитоплазмы

Ответ


Выберите один, наиболее правильный вариант. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК
1) ионная
2) пептидная
3) водородная
4) ковалентная полярная

Ответ


Выберите один, наиболее правильный вариант. К биологическим полимерам относят молекулу
1) рибозы
2) глюкозы
3) аминокислоты

Ответ


Выберите один, наиболее правильный вариант. Соединение двух цепей в молекуле ДНК происходит за счет
1) гидрофобных взаимодействий нуклеотидов
2) пептидных связей между азотистыми основаниями
3) взаимодействий комплементарных азотистых оснований
4) ионных взаимодействий нуклеотидов

Ответ


Выберите один, наиболее правильный вариант. Копией одного или группы генов, несущих информацию о структуре белков, выполняющих одну функцию, является молекула

2) тРНК
3) АТФ
4) иРНК

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Выберите особенности строения молекулы ДНК.
1) одноцепочная молекула
2) содержит урациловый нуклеотид
3) двуцепочная молекула
4) спиралевидная молекула
5) содержит рибозу
6) цепи удерживаются водородными связями

Ответ


ДНК КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) выполняет ферментативную функцию
2) хранит и передает наследственную информацию
3) состоит из двух нуклеотидных цепей
4) в комплексе с белками образует хромосомы
5) участвует в процессе трансляции

Ответ


ДНК УДВОЕНИЕ
Установите, в какой последовательности происходит процесс репликации ДНК. Запишите соответствующую последовательность цифр.

1) образование двух молекул ДНК из одной
2) присоединение к каждой цепи ДНК комплементарных нуклеотидов
3) воздействие фермента ДНК-полимеразы на нуклеотиды
4) раскручивание молекулы ДНК

Ответ


ДНК - РНК
1. Установите соответствие между характеристикой и нуклеиновой кислотой: 1) ДНК, 2) РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.

А) транспортирует активированные молекулы аминокислот к месту синтеза белка
Б) является составной частью рибосом
В) не способна к репликации
Г) в прокариотических клетках представлена в виде кольцевой молекулы
Д) является главным хранителем генетической информации клетки
Е) содержит азотистое основание - тимин

Ответ


2. Установите соответствие между характеристикой и нуклеиновой кислотой: 1) ДНК, 2) РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) состоит из одной полинуклеотидной цепи
Б) содержит углевод дезоксирибозу
В) состоит из двух полинуклеотидных антипараллельных цепей
Г) способна к репликации
Д) содержит углевод рибозу
Е) содержит азотистое основание урацил

Ответ


ДНК - тРНК
Установите соответствие между характеристикой молекулы нуклеиновой кислоты и ее видом: 1) тРНК, 2) ДНК. Запишите цифры 1 и 2 в правильном порядке.

А) состоит из одной полинуклиотидной цепи
Б) транспортирует аминокислоту к рибосоме
В) состоит из 70-80 остатков нуклеотидов
Г) хранит наследственную информацию
Д) способна к репликации
Е) представляет собой спираль

Ответ


ДНК - иРНК ОТЛИЧИЯ
Выберите три варианта. Чем молекула ДНК отличается от молекулы иРНК?

1) способна самоудваиваться
2) не может самоудваиваться
3) участвует в реакциях матричного типа
4) не может служить матрицей для синтеза других молекул
5) состоит из двух полинуклеотидных нитей, закрученных в спираль
6) является составной частью хромосом

Ответ


РНК КРОМЕ
1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.

1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) состоит из одной полинуклеотидной неспирализованной цепи
3) передает наследственную информацию из ядра к рибосоме
4) имеет самые большие размеры из нуклеиновых кислот
5) состоит из нуклеотидов АУГЦ

Ответ


2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) содержит азотистое основание тимин
2) переносит информацию к месту синтеза белка
3) в комплексе с белками строит тело рибосомы
4) способна образовывать химическую связь с аминокислотами
5) не способна образовывать вторичную структуру

Ответ


иРНК КРОМЕ
Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы иРНК. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) синтезируется на ДНК
2) транспортирует аминокислоты
3) входит в состав рибосом
4) отсутствуют комплементарные участки
5) одноцепочная молекула

Ответ


иРНК - тРНК
Установите соответствие между признаком нуклеиновой кислоты и ее видом: 1) и-РНК, 2) т-РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.

А) имеет форму клеверного листа
Б) доставляет аминокислоты к рибосоме
В) имеет самые маленькие размеры из нуклеиновых кислот
Г) служит матрицей для синтеза белков
Д) передает наследственную информацию из ядра к рибосоме

Ответ


иРНК - рРНК - тРНК
Установите соответствие между характеристиками и органическими веществами клетки: 1) иРНК, 2) тРНК, 3) рРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.

А) доставляет аминокислоты для трансляции
Б) содержит информацию о первичной структуре полипептида
В) входит в состав рибосом
Г) служит матрицей для трансляции
Д) активизирует аминокислоту

Ответ



тРНК РИСУНОК
Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке схемы строения молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

1) имеет антикодон
2) осуществляет денатурацию
3) транспортирует аминокислоты
4) выполняет ферментативную функцию
5) состоит из нуклеотидов

Ответ


НУКЛ.КИСЛОТЫ ФУНКЦИИ
Все приведенные ниже признаки, кроме двух, можно использовать для описания функций нуклеиновых кислот в клетке. Определите два признака, «выпадающих» из общего списка, и запишите в таблицу цифры, под которыми они указаны.

1) осуществляют гомеостаз
2) переносят наследственную информацию от ядра к рибосоме
3) участвуют в биосинтезе белка
4) входят в состав клеточной мембраны
5) транспортируют аминокислоты

Ответ


НУКЛЕОТИД ИЗ ДРУГОЙ ПАРЫ
1. В ДНК на долю нуклеотидов с тимином приходится 23%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 13%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В ДНК на долю нуклеотидов с аденином приходится 18%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


4. В ДНК на долю нуклеотидов с тимином приходится 36%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


5. В ДНК на долю нуклеотидов с тимином приходится 28%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД ИЗ ЭТОЙ ЖЕ ПАРЫ
1. Фрагмент молекулы ДНК содержит 15% аденина. Сколько тимина в этом фрагменте ДНК? В ответ запишите только число (количество процентов тимина).

Ответ


2. В некоторой молекуле ДНК на долю нуклеотидов с гуанином приходится 28%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином приходится 37%. Определите процентное содержание нуклеотидов с тимином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД - СУММА ОДНОЙ ПАРЫ
1. Какое процентное содержание нуклеотидов с аденином и тимином в сумме содержит молекула ДНК, если доля ее нуклеотидов с цитозином составляет 26% от общего числа? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 15%. Определите процентное содержание нуклеотидов с тимином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА ОДНОЙ ПАРЫ - НУКЛЕОТИД
1. Какой процент составляют нуклеотиды с аденином в молекуле ДНК, если нуклеотиды с гуанином и цитозином вместе составляют 18%? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с гуанином и цитозином приходится 36%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 26%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


4. В некоторой молекуле ДНК на долю нуклеотидов с цитозином и гуанином в сумме приходится 42%. Определите процентное содержание нуклеотидов с аденином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


5. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 54%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА РАЗНЫХ ПАР
1. Фрагмент молекулы ДНК содержит 10% тимина. Сколько аденина и гуанина в сумме в этом фрагменте ДНК? В ответ запишите только количество аденина и гуанина в сумме.

Ответ


2. В ДНК на долю нуклеотидов с тимином приходится 35%. Определите процентное содержание нуклеотидов с цитозином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


МАТЕМАТИКААА
Сколько нуклеотидов с цитозином содержит молекула ДНК, если количество нуклеотидов с тимином 120, что составляет 15% от общего числа? В ответе запишите соответствующее число.

Ответ


В РНК на долю нуклеотидов с урацилом и аденином приходится по 10%. Определите процентное содержание нуклеотидов с тимином входящих в состав комплементарной, двуспиральной цепи ДНК. В ответе запишите только соответствующее число.

Ответ


Участок цепочки ДНК бактериофага лямбда содержит 23 нуклеотида с тимином, сколько нуклеотидов с цитозином в этом участке, если его протяженность 100 нуклеотидов? В ответ запишите только количество нуклеотидов.

Ответ


В молекуле и-РНК содержится 200 нуклеотидов с урацилом, что составляет 10% от общего числа нуклеотидов. Сколько нуклеотидов (в %) с аденином содержит одна из цепей молекулы ДНК? В ответе запишите соответствующее число.

Ответ


Фрагмент молекулы ДНК содержит 60 нуклеотидов. Из них 12 нуклеотидов приходится на тимин. Сколько гуаниновых нуклеотидов содержится в этом фрагменте? В ответе запишите только число.

Ответ


Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Сколько нуклеотидов содержится в двух цепях ДНК? Ответ запишите в виде числа.

Ответ


1. Сколько нуклеотидов включает фрагмент двуцепочечной молекулы ДНК, содержащий 14 нуклеотидов с аденином и 20 нуклеотидов с гуанином? В ответе запишите только соответствующее число.

Ответ


2. Сколько нуклеотидов включает в себя фрагмент двуцепочечной молекулы ДНК, если в нём содержится 16 нуклеотидов с тимином и 16 нуклеотидов с цитозином? В ответе запишите только соответствующее число.

Ответ



1. Проанализируйте таблицу. Наполните пустые ячейки таблицы, используя понятия и термины, приведенные и списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) урацил
2) построение тела рибосомы
3) перенос информации о первичной структуре белка
4) рРНК

Ответ



2. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) рРНК
2) образование в комплексе с белками тела рибосомы
3) хранение и передача наследственной информации
4) урацил
5) тРНК
6) аминокислота

8) синтез иРНК

Ответ



3. Проанализируйте таблицу «Виды РНК». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из приведенного списка.
1) мРНК
2) тРНК
3) комплементарна участку молекулы ДНК, несущему информацию о первичной структуре одного белка
4) содержит тимин и дезоксирибозу
5) способна к репликации
6) входит в состав рибосом, участвует в синтезе белка
7) состоит из двух нитей, спирально обвивающих друг друга

Ответ



4. Проанализируйте таблицу «Строение и функции нуклеиновых кислот». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или характеристику из предложенного списка.
1) двойная спираль
2) мономер
3) состоит из аминокислот
4) белок
5) иРНК
6) АТФ
7) транспорт аминокислот

Ответ



Рассмотрите рисунок с изображением фрагмента молекулы биополимера. Определите, (А) что служит ее мономером, (Б) в результате какого процесса увеличивается число этих молекул в клетке, (В) какой принцип лежит в основе ее копирования. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) комплементарность
2) репликация
3) нуклеотид
4) денатурация
5) углевод
6) трансляция
7) транскрипция

Ответ



Рассмотрите рисунок с изображением молекулы органического вещества и определите (А) класс органического вещества, (Б) мономеры этого вещества и (В) функцию, выполняемую этим веществом. Для каждой ячейки, обозначенной буквой, выберите соответствующий термин из предложенного списка.
1) транспортная
2) энергетическая
3) белки
4) нуклеотиды
5) нуклеиновые кислоты
6) моносахариды
7) аминокислоты
8) хранение наследственной информации

Ответ


© Д.В.Поздняков, 2009-2019

ДНК - один из двух видов нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т) и остаток фосфорной кислоты.
В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.
Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против одного азотистого основания в одной цепи лежит строго определенное азотистое основание в другой цепи - эти пары оснований называют комплиментарными основаниями (дополняющими друг друга): А=Т; Г Ц
Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков.

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Вначале новое вещество получило название нуклеин , а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота . Биологическая функция новооткрытого вещества была неясна, и долгое время ДНК считалась запасником фосфора в организме. Более того, даже в начале XX века многие биологи считали, что ДНК не имеет никакого отношения к передаче информации, поскольку строение молекулы, по их мнению, было слишком однообразным и не могло содержать закодированную информацию.

Постепенно было доказано, что именно ДНК, а не белки, как считалось раньше, является носителем генетической информации. Одно из первых решающих доказательств принесли эксперименты О. Эвери, Колина Мак-Леода и Маклин Мак-Карти (1944 г.) по трансформации бактерий. Им удалось показать, что за так называемую трансформацию (приобретение болезнетворных свойств безвредной культурой в результате добавления в неё мёртвых болезнетворных бактерий) отвечают выделенные из пневмококков ДНК. Эксперимент американских учёных Алфреда Херши и Марты Чейз (Эксперимент Херши-Чейз, 1952 г.) с помеченными радиоактивными изотопами белками и ДНК бактериофагов показали, что в заражённую клетку передаётся только нуклеиновая кислота фага, а новое поколение фага содержит такие же белки и нуклеиновую кислоту, как исходный фаг.

Вплоть до 50-х годов XX века точное строение ДНК, как и способ передачи наследственной информации, оставалось неизвестным. Хотя и было доподлинно известно, что ДНК состоит из нескольких цепочек, состоящих из нуклеотидов, никто не знал точно, сколько этих цепочек и как они соединены.

Структура двойной спирали ДНК была предложена Френсисом Криком и Джеймсом Уотсоном в 1953 году на основании рентгеноструктурных данных, полученных Морисом Уилкинсом и Розалинд Франклин, и «правил Чаргаффа», согласно которым в каждой молекуле ДНК соблюдаются строгие соотношения, связывающие между собой количество азотистых оснований разных типов. Позже предложенная Уотсоном и Криком модель строения ДНК была доказана, а их работа отмечена Нобелевской премией по физиологии и медицине 1962 г. Среди лауреатов не было скончавшейся к тому времени Розалинды Франклин, так как премия не присуждается посмертно

 

Возможно, будет полезно почитать: