Среда водных растворов: кислая, нейтральная, щелочная. Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная Среда становится кислой при растворении соли

Для того, чтобы понять, что такое гидролиз солей, вспомним для начала, как диссоциируют кислоты и щелочи.

Общим между всеми кислотами является то, что при их диссоциации обязательно образуются катионы водорода (Н +), при диссоциации же всех щелочей всегда образуются гидроксид-ионы (ОН −).

В связи с этим, если в растворе, по тем или иным причинам, больше ионов Н + говорят, что раствор имеет кислую реакцию среды, если ОН − — щелочную реакцию среды.

Если с кислотами и щелочами все понятно, то какая же реакция среды будет в растворах солей?

На первый взгляд, она всегда должна быть нейтральной. И правда же, откуда, например, в растворе сульфида натрия взяться избытку катионов водорода или гидроксид-ионов. Сам сульфид натрия при диссоциации не образует ионов ни одного, ни другого типа:

Na 2 S = 2Na + + S 2-

Тем не менее, если бы перед вами оказались, к примеру, водные растворы сульфида натрия, хлорида натрия, нитрата цинка и электронный pH-метр (цифровой прибор для определения кислотности среды) вы бы обнаружили необычное явление. Прибор показал бы вам, что рН раствора сульфида натрия больше 7, т.е. в нем явный избыток гидроксид-ионов. Среда раствора хлорида натрия оказалась бы нейтральной (pH = 7), а раствора Zn(NO 3) 2 кислой.

Единственное, что соответствует нашим ожиданиям – это среда раствора хлорида натрия. Она оказалась нейтральной, как и предполагалось.

Но откуда же взялся избыток гидроксид-ионов в растворе сульфида натрия, и катионов-водорода в растворе нитрата цинка?

Попробуем разобраться. Для этого нам нужно усвоить следующие теоретические моменты.

Любую соль можно представить как продукт взаимодействия кислоты и основания. Кислоты и основания делятся на сильные и слабые. Напомним, что сильными называют те кислоты, и основания, степень диссоциации, которых близка к 100%.

примечание: сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) чаще относят к кислотам средней силы, но при рассмотрении заданий по гидролизу нужно относить их к слабым.

Кислотные остатки слабых кислот, способны обратимо взаимодействовать с молекулами воды, отрывая от них катионы водорода H + . Например, сульфид-ион, являясь кислотным остатком слабой сероводородной кислоты, взаимодействует с ней следующим образом:

S 2- + H 2 O ↔ HS − + OH −

HS − + H 2 O ↔ H 2 S + OH −

Как можно видеть, в результате такого взаимодействия образуется избыток гидроксид-ионов, отвечающий за щелочную реакцию среды. То есть кислотные остатки слабых кислот увеличивают щелочность среды. В случае растворов солей содержащих такие кислотные остатки говорят, что для них наблюдается гидролиз по аниону .

Кислотные остатки сильных кислот, в отличие от слабых, с водой не взаимодействуют. То есть они не оказывают влияния на pH водного раствора. Например, хлорид-ион, являясь кислотным остатком сильной соляной кислоты, с водой не реагирует:

То есть, хлорид-ионы, не влияют на pН раствора.

Из катионов металлов, так же с водой способны взаимодействовать только те, которым соответствуют слабые основания. Например, катион Zn 2+ , которому соответствует слабое основание гидроксид цинка. В водных растворах солей цинка протекают процессы:

Zn 2+ + H 2 O ↔ Zn(OH) + + H +

Zn(OH) + + H 2 O ↔ Zn(OH) + + H +

Как можно видеть из уравнений выше, в результате взаимодействия катионов цинка с водой, в растворе накапливаются катионы водорода, повышающие кислотность среды, то есть понижающие pH. Если в состав соли, входят катионы, которым соответствуют слабые основания, в этом случае говорят что соль гидролизуется по катиону .

Катионы металлов, которым соответствуют сильные основания, с водой не взаимодействуют. Например, катиону Na + соответствует сильное основание – гидроксид натрия. Поэтому ионы натрия с водой не реагируют и никак не влияют на pH раствора.

Таким образом, исходя из вышесказанного соли можно разделить на 4 типа, а именно, образованные:

1) сильным основанием и сильной кислотой,

Такие соли не содержат ни кислотных остатков, ни катионов металлов, взаимодействующих с водой, т.е. способных повлиять на pH водного раствора. Растворы таких солей имеют нейтральную реакцию среды. Про такие соли говорят, что они не подвергаются гидролизу .

Примеры: Ba(NO 3) 2 , KCl, Li 2 SO 4 и т.д.

2) сильным основанием и слабой кислотой

В растворах таких солей, с водой реагируют только кислотные остатки. Среда водных растворов таких солей щелочная, в отношении солей такого типа говорят, что они гидролизуются по аниону

Примеры: NaF, K 2 CO 3 , Li 2 S и т.д.

3) слабым основанием и сильной кислотой

У таких солей с водой реагируют катионы, а кислотные остатки не реагируют – гидролиз соли по катиону , среда кислая.

Примеры: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 и т.д.

4) слабым основанием и слабой кислотой.

С водой реагируют как катионы, так и анионы кислотных остатков. Гидролиз солей такого рода идет и по катиону, и по аниону . Нередко такие соли подвергаются необратимому гидролизу .

Что же значит то, что они необратимо гидролизуются?

Поскольку в данном случае с водой реагируют и катионы металла (или NH 4 +) и анионы кислотного остатка, в раcтворе одновременно возникают и ионы H + , и ионы OH − , которые образуют крайне малодиссоциирующее вещество – воду (H 2 O).

Это, в свою очередь, приводит к тому, что соли образованные кислотными остатками слабых оснований и слабых кислот не могут быть получены обменными реакциями, а только твердофазным синтезом, либо и вовсе не могут быть получены. Например, при смешении раствора нитрата алюминия с раствором сульфида натрия, вместо ожидаемой реакции:

2Al(NO 3) 3 + 3Na 2 S = Al 2 S 3 + 6NaNO 3 (− так реакция не протекает!)

Наблюдается следующая реакция:

2Al(NO 3) 3 + 3Na 2 S + 6H 2 O= 2Al(OH) 3 ↓+ 3H 2 S + 6NaNO 3

Тем не менее, сульфид алюминия без проблем может быть получен сплавлением порошка алюминия с серой:

2Al + 3S = Al 2 S 3

При внесении сульфида алюминия в воду, он также как и при попытке его получения в водном растворе, подвергается необратимому гидролизу.

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S

Лекция: Гидролиз солей. Среда водных растворов: кислая, нейтральная, щелочная

Гидролиз солей

Мы продолжаем изучать закономерности протекания химических реакций. При изучении темы вы узнали, что при электролитической диссоциации в водном растворе частицы, участвующих в реакции веществ растворяются в воде. Это гидролиз. Ему подвергаются различные неорганические и органические вещества, в частности, соли. Без понимания процесса гидролиза солей, вы не сможете объяснить явления, происходящие в живых организмах.

Сущность гидролиза солей сводится к обменному процессу взаимодействия ионов (катионов и анионов) соли с молекулами воды. В результате образуется слабый электролит – малодиссоциирующее соединение. В водном растворе появляется избыток свободных ионов Н + или ОН - . Вспомните, диссоциация каких электролитов образует ионы Н + , а каких ОН - . Как вы догадались, в первом случае мы имеем дело с кислотой, значит водная среда с ионами Н + будет кислой. Во втором же случае, щелочной. В самой воде среда нейтральная, поскольку она незначительно диссоциируется на одинаковые по концентрации ионы Н + и ОН - .

Характер среды можно определить с помощью индикаторов. Фенолфталеин обнаруживает щелочную среду и окрашивает раствор в малиновый цвет. Лакмус под действием кислоты становится красным, а под действием щелочи остается синим. Метилоранж - оранжевый, в щелочной среде становится желтым, в кислой среде – розовым. Тип гидролиза зависит от типа соли.


Типы солей

Итак, любую соль представляет собой можно взаимодействие кислоты и основания, которые, как вы поняли, бывают сильными и слабыми. Сильные – это те, чья степень диссоциации α близка к 100%. Следует запомнить, что сернистую (H 2 SO 3) и фосфорную (H 3 PO 4) кислоту чаще относят к кислотам средней силы. При решении задач по гидролизу, данные кислоты необходимо относить к слабым.

Кислоты:

    Сильные: HCl; HBr; Hl; HNO 3 ; HClO 4 ; H 2 SO 4 . Их кислотные остатки с водой не взаимодействуют.

    Слабые: HF; H 2 CO 3 ; H 2 SiO 3 ; H 2 S; HNO 2 ; H 2 SO 3 ; H 3 PO 4 ; органические кислоты. А их кислотные остатки взаимодействуют с водой, забирая у её молекул катионы водорода H+.

Основания:

    Сильные: растворимые гидроксиды металлов; Ca(OH) 2 ; Sr(OH) 2 . Их катионы металлов с водой не взаимодействуют.

    Слабые: нерастворимые гидроксиды металлов; гидроксид аммония (NH 4 OH). А катионы металлов здесь взаимодействуют с водой.

Исходя из данного материала, рассмотрим типы солей :

    Соли с сильным основанием и сильной кислотой. К примеру: Ba (NO 3) 2 , KCl, Li 2 SO 4 . Особенности: не взаимодействуют с водой, а значит гидролизу не подвергаются. Растворы таких солей имеют нейтральную реакцию среды.

    Соли с сильным основанием и слабой кислотой. К примеру: NaF, K 2 CO 3 , Li 2 S. Особенности: с водой взаимодействуют кислотные остатки этих солей, происходит гидролиз по аниону. Среда водных растворов - щелочная.

    Соли со слабым основанием и сильной кислотой. К примеру: Zn(NO 3) 2 , Fe 2 (SO 4) 3 , CuSO 4 . Особенности: с водой взаимодействуют только катионы металлов, происходит гидролиз по катиону. Среда - кислая.

    Соли со слабым основанием и слабой кислотой. К примеру: CH 3 COONН 4 , (NН 4) 2 CО 3 , HCOONН 4. Особенности: с водой взаимодействуют как катионы, так и анионы кислотных остатков, гидролиз происходит по катиону и аниону.

Пример гидролиза по катиону и образования кислой среды :

    Гидролиз хлорида железа FeCl 2

FeCl 2 + H 2 O ↔ Fe(OH)Cl + HCl (молекулярное уравнение)

Fe 2+ + 2Cl - + H + + OH - ↔ FeOH + + 2Cl - + Н + (полное ионное уравнение)

Fe 2+ + H 2 O ↔ FeOH + + Н + (сокращенное ионное уравнение)

Пример гидролиза по аниону и образования щелочной среды:

    Гидролиз ацетата натрия CH 3 COONa

CH 3 COONa + H 2 O ↔ CH 3 COOH + NaOH (молекулярное уравнение)

Na + + CH 3 COO - + H 2 O ↔ Na + + CH 3 COOH + OH - (полное ионное уравнение)

CH 3 COO - + H 2 O ↔ CH 3 COOH + OH - (сокращенное ионное уравнение)

Пример совместного гидролиза:

  • Гидролиз сульфида алюминия Al 2 S 3

Al 2 S 3 + 6H2O ↔ 2Al(OH) 3 ↓+ 3H 2 S

В данном случае мы видим полный гидролиз, который происходит, если соль образована слабым нерастворимым или летучим основанием и слабой нерастворимой или летучей кислотой. В таблице растворимости стоят прочерки на таких солях. Если в ходе реакции ионного обмена образуется соль, которая не существует в водном растворе, то надо написать реакцию этой соли с водой.

Например:

2FeCl 3 + 3Na 2 CO 3 ↔ Fe 2 (CO 3) 3 + 6NaCl

Fe 2 (CO 3) 3 + 6H 2 O ↔ 2Fe(OH) 3 + 3H 2 O + 3CO 2

Складываем эти два уравнения, то что повторяется в левой и правой частях, сокращаем:

2FeCl 3 + 3Na 2 CO 3 + 3H 2 O ↔ 6NaCl + 2Fe(OH) 3 ↓ + 3CO 2



Раствор – это гомогенная система, состоящая из двух или более веществ, содержание которых можно изменять в определенных пределах без нарушения однородности.

Водные растворы состоят из воды (растворителя) и растворенного вещества. Состояние веществ в водном растворе при необходимости обозначается нижним индексом (р), например, KNO 3 в растворе – KNO 3(p) .

Растворы, которые содержат малое количество растворенного вещества, часто называют разбавленными, а растворы с высоким содержанием растворенного вещества – концентрированными. Раствор, в котором возможно дальнейшее растворение вещества, называется ненасыщенным, а раствор, в котором вещество перестает растворяться при данных условиях, – насыщенным. Последний раствор всегда находится в контакте (в гетерогенном равновесии) с нерастворившимся веществом (один кристалл или более).

В особых условиях, например при осторожном (без перемешивания) охлаждении горячего ненасыщенного раствора твердого вещества, может образоваться пересыщенный раствор. При введении кристалла вещества такой раствор разделяется на насыщенный раствор и осадок вещества.

В соответствии с химической теорией растворов Д. И. Менделеева растворение вещества в воде сопровождается, во-первых, разрушением химических связей между молекулами (межмолекулярные связи в ковалентных веществах) или между ионами (в ионных веществах), и, таким образом, частицы вещества смешиваются с водой (в которой также разрушается часть водородных связей между молекулами). Разрыв химических связей совершается за счет тепловой энергии движения молекул воды, при этом происходит затрата энергии в форме теплоты.

Во-вторых, попав в воду, частицы (молекулы или ионы) вещества подвергаются гидратации. В результате образуются гидраты – соединения неопределенного состава между частицами вещества и молекулами воды (внутренний состав самих частиц вещества при растворении не изменяется). Такой процесс сопровождается выделением энергии в форме теплоты за счет образования новых химических связей в гидратах.

В целом раствор либо охлаждается (если затрата теплоты превосходит ее выделение), либо нагревается (в противном случае); иногда – при равенстве затраты теплоты и ее выделения – температура раствора остается неизменной.

Многие гидраты оказываются настолько устойчивыми, что не разрушаются и при полном выпаривании раствора. Так, известны твердые кристаллогидраты солей CuSO 4 5Н 2 O, Na 2 CO 3 10Н 2 O, KAl(SO 4) 2 12Н 2 O и др.

Содержание вещества в насыщенном растворе при Т = const количественно характеризует растворимость этого вещества. Обычно растворимость выражается массой растворенного вещества, приходящейся на 100 г воды, например 65,2 г КBr/100 г Н 2 O при 20 °C. Следовательно, если 70 г твердого бромида калия ввести в 100 г воды при 20 °C, то 65,2 г соли перейдет в раствор (который будет насыщенным), а 4,8 г твердого КBr (избыток) останется на дне стакана.

Следует запомнить, что содержание растворенного вещества в насыщенном растворе равно , в ненасыщенном растворе меньше и в пересыщенном растворе больше его растворимости при данной температуре. Так, раствор, приготовленный при 20 °C из 100 г воды и сульфата натрия Na 2 SO 4 (растворимость 19,2 г/100 г Н 2 O), при содержании

15,7 г соли – ненасыщенный;

19.2 г соли – насыщенный;

2O.3 г соли – пересыщенный.

Растворимость твердых веществ (табл. 14) обычно увеличивается с ростом температуры (КBr, NaCl), и лишь для некоторых веществ (CaSO 4 , Li 2 CO 3) наблюдается обратное.

Растворимость газов при повышении температуры падает, а при повышении давления растет; например, при давлении 1 атм растворимость аммиака составляет 52,6 (20 °C) и 15,4 г/100 г Н 2 O (80 °C), а при 20 °C и 9 атм она равна 93,5 г/100 г Н 2 O.

В соответствии со значениями растворимости различают вещества:

хорошо растворимые, масса которых в насыщенном растворе соизмерима с массой воды (например, КBr – при 20 °C растворимость 65,2 г/100 г Н 2 O; 4,6М раствор), они образуют насыщенные растворы с молярностью более чем 0,1М;

малорастворимые, масса которых в насыщенном растворе значительно меньше массы воды (например, CaSO 4 – при 20 °C растворимость 0,206 г/100 г Н 2 O; 0,015М раствор), они образуют насыщенные растворы с молярностью 0,1–0,001М;

практически нерастворимые, масса которых в насыщенном растворе пренебрежимо мала по сравнению с массой растворителя (например, AgCl – при 20 °C растворимость 0,00019 г на 100 г Н 2 O; 0,0000134М раствор), они образуют насыщенные растворы с молярностью менее чем 0,001М.

По справочным данным составлена таблица растворимости распространенных кислот, оснований и солей (табл. 15), в которой указан тип растворимости, отмечены вещества, не известные науке (не полученные) или полностью разлагающиеся водой.

Условные обозначения, используемые в таблице:

«р» – хорошо растворимое вещество

«м» – малорастворимое вещество

«н» – практически нерастворимое вещество

«-» – вещество не получено (не существует)

«» – вещество смешивается с водой неограниченно




Примечание. Данная таблица отвечает приготовлению насыщенного раствора при комнатной температуре путем внесения вещества (в соответствующем агрегатном состоянии) в воду. Следует учесть, что получение осадков малорастворимых веществ с помощью реакций ионного обмена возможно не всегда (подробнее см. 13.4).

13.2. Электролитическая диссоциация

Растворение любого вещества в воде сопровождается образованием гидратов. Если при этом в растворе не происходит формульных изменений у частиц растворенного вещества, то такие вещества относят к неэлектролитам. Ими являются, например, газ азот N 2 , жидкость хлороформ СНCl 3 , твердое вещество сахароза C 12 Н 22 О 11 , которые в водном растворе существуют в виде гидратов их молекул.

Известно много веществ (в общем виде МА), которые после растворения в воде и образования гидратов молекул MA nН 2 O претерпевают существенные формульные изменения. В результате в растворе появляются гидратированные ионы – катионы М + nН 2 O и анионы А nН 2 O:




Такие вещества относят к электролитам.

Процесс появления гидратированных ионов в водном растворе называется электролитической диссоциацией (С. Аррениус, 1887).

Электролитическая диссоциация ионных кристаллических веществ (М +)(А -) в воде является необратимой реакцией:



Такие вещества относятся к сильным электролитам, ими являются многие основания и соли, например:



Электролитическая диссоциация веществ MA, состоящих из полярных ковалентных молекул, является обратимой реакцией:



Такие вещества относят к слабым электролитам, ими являются многие кислоты и некоторые основания, например:





В разбавленных водных растворах слабых электролитов мы всегда обнаружим как исходные молекулы, так и продукты их диссоциации – гидратированные ионы.

Количественная характеристика диссоциации электролитов называется степенью диссоциации и обозначается? , всегда? > 0.

Для сильных электролитов? = 1 по определению (диссоциация таких электролитов полная).

Для слабых электролитов степень диссоциации – отношение молярной концентрации продиссоциировавшего вещества (с д) к общей концентрации вещества в растворе (с):



Степень диссоциации – это доля от единицы или от 100 %. Для слабых электролитов? « С 1 (100 %).

Для слабых кислот Н n А степень диссоциации по каждой следующей ступени резко уменьшается по сравнению с предыдущей:




Степень диссоциации зависит от природы и концентрации электролита, а также от температуры раствора; она растет при уменьшении концентрации вещества в растворе (т. е. при разбавлении раствора) и при нагревании .

В разбавленных растворах сильных кислот Н n А их гидроанионы Н n-1 А не существуют, например:




B концентрированных растворах содержание гидроанионов (и даже исходных молекул) становится заметным:



(суммировать уравнения стадий обратимой диссоциации нельзя!). При нагревании значения? 1 и? 2 возрастают, что способствует протеканию реакций с участием концентрированных кислот.

Кислоты – это электролиты, которые при диссоциации поставляют в водный раствор катионы водорода и никаких других положительных ионов не образуют:



Распространенные сильные кислоты:




В разбавленном водном растворе (условно до 10 %-ного или 0,1-молярного) эти кислоты диссоциируют полностью. Для сильных кислот Н n А в список вошли их гидроанионы (анионы кислых солей), также диссоциирующие полностью в этих условиях.

Распространенные слабые кислоты:




Основания – это электролиты, которые при диссоциации поставляют в водный раствор гидроксид-ионы и никаких других отрицательных ионов не образуют:



Диссоциация малорастворимых оснований Mg(OH) 2 , Cu(OH) 2 , Mn(OH) 2 , Fe(OH) 2 и других практического значения не имеет.

К сильным основаниям (щелочам ) относятся NaOH, КОН, Ва(ОН) 2 и некоторые другие. Самым известным слабым основанием является гидрат аммиака NH 3 Н 2 O.

Средние соли – это электролиты, которые при диссоциации поставляют в водный раствор любые катионы, кроме Н + , и любые анионы, кроме ОН - :



Речь идет только о хорошо растворимых солях. Диссоциация малорастворимых и практически нерастворимых солей значения не имеет.

Аналогично диссоциируют двойные соли:



Кислые соли (большинство из них растворимы в воде) диссоциируют полностью по типу средних солей:



Образующиеся гидроанионы подвергаются, в свою очередь, воздействию воды:

а) если гидроанион принадлежит сильной кислоте, то он сам диссоциирует также полностью:



и полное уравнение диссоциации запишется в виде:



(растворы таких солей обязательно будут кислыми, как и растворы соответствующих кислот);

б) если гидроанион принадлежит слабой кислоте, то его поведение в воде двойственно – либо неполная диссоциация по типу слабой кислоты:



либо взаимодействие с водой (называемое обратимым гидролизом):



При? 1 > ? 2 преобладает диссоциация (и раствор соли будет кислым), а при? 1 > ? 2 – гидролиз (и раствор соли будет щелочным). Так, кислыми будут растворы солей с анионами HSO 3 - , H 2 PO 4 - , H 2 AsO 4 - и HSeO 3 - , растворы солей с другими анионами (их большинство) будут щелочными. Другими словами, название «кислые» для солей с большинством гидроанионов не предполагает, что эти анионы будут вести себя в растворе как кислоты (гидролиз гидроанионов и расчет отношения между? 1 и а 2 изучаются только в высшей школе).

Оснoвные соли MgCl(OH), Cu 2 CO 3 (OH) 2 и другие в своем большинстве практически нерастворимы в воде, и обсуждать их поведение в водном растворе невозможно.

13.3. Диссоциация воды. Среда растворов

Сама вода – это очень слабый электролит:



Концентрации катиона Н + и аниона ОН - в чистой воде весьма малы и составляют 1 10 -7 моль/л при 25 °C.

Катион водорода Н + представляет собой простейшее ядро – протон р + (электронная оболочка катиона Н + – пустая, 1s 0). У свободного протона велики подвижность и проникающая способность, в окружении полярных молекул Н 2 O он не может оставаться свободным. Протон тут же присоединяется к молекуле воды:



В дальнейшем для простоты оставляется запись Н + (но подразумевается Н 3 O +).

Типы среды водных растворов:





Для воды при комнатной температуре имеем:



следовательно, в чистой воде:



Это равенство справедливо и для водных растворов:



Практическая шкала рН отвечает интервалу 1-13 (разбавленные растворы кислот и оснований):




В практически нейтральной среде с рН = 6–7 и рН = 7–8 концентрация Н + и ОН - очень мала (1 10 -6 – 1 10 -7 моль/л) и почти равна концентрации этих ионов в чистой воде. Такие растворы кислот и оснований считаются предельно разбавленными (содержат очень мало вещества).

Для практического установления типа среды водных растворов служат индикаторы – вещества, которые окрашивают в характерный цвет нейтральные, кислые и/или щелочные растворы.

Распространенные в лаборатории индикаторы – это лакмус, метилоранж и фенолфталеин.

Метилоранж (индикатор на кислотную среду) становится розовым в сильнокислом растворе (табл. 16), фенолфталеин (индикатор на щелочную среду) – малиновым в сильнощелочном растворе, а лакмус используется во всех средах.



13.4. Реакции ионного обмена

В разбавленных растворах электролитов (кислот, оснований, солей) химические реакции протекают обычно при участии ионов . При этом все элементы реагентов могут сохранять свои степени окисления (обменные реакции) или изменять их (окислительно-восстановительные реакции). Примеры, приводимые далее, относятся к обменным реакциям (о протекании окислительно-восстановительных реакций см. разд. 14).

В соответствии с правилом Бертолле, ионные реакции протекают практически необратимо, если образуются твердые малорастворимые вещества (они выпадают в осадок), легколетучие вещества (они выделяются в виде газов) или растворимые вещества – слабые электролиты (в том числе и вода). Ионные реакции изображаются системой уравнений - молекулярным, полным и кратким ионным. Ниже полные ионные уравнения опущены (читателю предлагается составить их самому).

При написании уравнений ионных реакций надо обязательно руководствоваться таблицей растворимости (см. табл. 8).

Примеры реакций с выпадением осадков:





Внимание! Указанные в таблице растворимости (см. табл. 15) малорастворимые («м») и практически нерастворимые («н») соли выпадают в осадок именно в том виде, как они представлены в таблице (СаF 2 v, PbI 2 v, Ag 2 SO 4 v, AlPO 4 v и т. д.).

В табл. 15 не указаны карбонаты – средние соли с анионом CO 3 2- . Следует иметь в виду, что:

1) К 2 СO 3 , (NH 4) 2 CO 3 и Na 2 CO 3 растворимы в воде;

2) Ag 2 CO 3 , ВаСO 3 и СаСO 3 практически нерастворимы в воде и выпадают в осадок как таковые, например:



3) соли остальных катионов, такие как MgCO 3 , CuCO 3 , FeCO 3 , ZnCO 3 и другие, хотя и нерастворимы в воде, но не осаждаются из водного раствора при проведении ионных реакций (т. е. их нельзя получить этим способом).

Например, карбонат железа (II) FeCO 3 , полученный «сухим путем» или взятый в виде минерала сидерит, при внесении в воду осаждается без видимого взаимодействия. Однако при попытке его получения по обменной реакции в растворе между FeSO 4 и К 2 СO 3 выпадает осадок основной соли (приведен условный состав, на практике состав более сложный) и выделяется углекислый газ:



Аналогично FeCO 3 , сульфид хрома (III) Cr 2 S 3 (нерастворимый в воде) не осаждается из раствора:



В табл. 15 не указаны также соли, которые разлагаются водой - сульфид алюминия Al 2 S 3 (а также BeS) и ацетат хрома (III) Cr(СН 3 СОО) 3:



Следовательно, эти соли также нельзя получить по обменной реакции в растворе:




(в последней реакции состав осадка более сложный; подробнее такие реакции изучают в высшей школе).

Примеры реакций с выделением газов:




Примеры реакций с образованием слабых электролитов:




Если реагенты и продукты обменной реакции не являются сильными электролитами, ионный вид уравнения отсутствует, например:


13.5. Гидролиз солей

Гидролиз соли – это взаимодействие ее ионов с водой, приводящее к появлению кислотной или щелочной среды, но не сопровождающееся образованием осадка или газа (ниже речь идет о средних солях).

Процесс гидролиза протекает только с участием растворимых солей и состоит из двух этапов:

1) диссоциация соли в растворе – необратимая реакция (степень диссоциации? = 1, или 100 %);

2) собственно гидролиз, т. е. взаимодействие ионов соли с водой, – обратимая реакция (степень гидролиза? < 1, или 100 %).

Уравнения 1-го и 2-го этапов – первый из них необратим, второй обратим – складывать нельзя!

Отметим, что соли, образованные катионами щелочей и анионами сильных кислот, гидролизу не подвергаются, они лишь диссоциируют при растворении в воде. В растворах солей КCl, NaNO 3 , Na 2 SO 4 и BaI 2 среда нейтральная .

В случае взаимодействия аниона гидролизом соли по аниону.



Диссоциация соли KNO 2 протекает полностью, гидролиз аниона NO 2 – в очень малой степени (для 0,1М раствора – на 0,0014 %), но этого оказывается достаточно, чтобы раствор стал щелочным (среди продуктов гидролиза присутствует ион ОН -), в нем рН = 8,14.

Гидролизу подвергаются анионы только слабых кислот (в данном примере – нитрит-ион NO 2 - , отвечающий слабой азотистой кислоте HNO 2). Анион слабой кислоты притягивает к себе катион водорода, имеющийся в воде, и образует молекулу этой кислоты, а гидроксид-ион остается свободным:



Список гидролизующихся анионов:









Обратите внимание, что в примерах (в – д) нельзя увеличивать число молекул воды и вместо гидроанионов (HCO 3 - , HPO 4 2- , HS -) писать формулы соответствующих кислот (Н 2 СO 3 , Н 3 РO 4 , H 2 S). Гидролиз – обратимая реакция, и протекать «до конца» (до образования кислоты Н n А) он не может.

Если бы такая неустойчивая кислота, как Н 2 СO 3 , образовалась в растворе своей соли Na 2 CO 3 , то наблюдалось бы выделение из раствора газа СO 2 (Н 2 СO 3 = СO 2 v + Н 2 O). Однако при растворении соды в воде образуется прозрачный раствор без газовыделения, что является свидетельством неполноты протекания гидролиза аниона СО| с появлением в растворе только гидроаниона угольной кислоты HCOg.

Степень гидролиза соли по аниону зависит от степени диссоциации продукта гидролиза – кислоты (HNO 2 , НClO, HCN) или ее гидроаниона (HCO 3 - , HPO 4 2- , HS -); чем слабее кислота, тем выше степень гидролиза. Например, ионы СО 3 2- , РО 4 3- и S 2- подвергаются гидролизу в большей степени (в 0,1 М растворах ~ 5 %, 37 % и 58 % соответственно), чем ион NO 2 , так как диссоциация Н 2 СO 3 и H 2 S по 2-й ступени, а Н 3 РO 4 по 3-й ступени (т. е. диссоциация ионов HCO 3 - , HS - и HPO 4 2-) протекает значительно меньше, чем диссоциация кислоты HNO 2 . Поэтому растворы, например, Na 2 CO 3 , К 3 РO 4 и BaS будут сильнощелочными (в чем легко убедиться по мылкости раствора соды на ощупь). Избыток ионов ОН в растворе легко обнаружить индикатором или измерить специальными приборами (рН-метрами).

Если в концентрированный раствор сильно гидролизующейся по аниону соли, например Na 2 CO 3 , внести алюминий, то последний (вследствие амфотерности) прореагирует с ОН -



и будет наблюдаться выделение водорода. Это – дополнительное доказательство протекания гидролиза иона СО 3 2- (ведь в раствор Na 2 CO 3 мы не добавляли щелочь NaOH!).

В случае взаимодействия катиона растворенной соли с водой процесс называется гидролизом соли по катиону:



Диссоциация соли Ni(NO 3) 2 протекает полностью, гидролиз катиона Ni 2+ – в очень малой степени (для 0,1 М раствора – на 0,001 %), но этого оказывается достаточно, чтобы раствор стал кислым (среди продуктов гидролиза присутствует ион Н +), в нем рН = 5,96.

Гидролизу подвергаются катионы только малорастворимых основных и амфотерных гидроксидов и катион аммония NH 4 + . Гидролизуемый катион притягивает к себе анион ОН - , имеющийся в воде, и образует соответствующий гидроксокатион, а катион Н + остается свободным:



Катион аммония в этом случае образует слабое основание – гидрат аммиака:



Список гидролизующихся катионов:




Примеры:





Обратите внимание, что в примерах (а – в) нельзя увеличивать число молекул воды и вместо гидроксокатионов FeOH 2+ , CrOH 2+ , ZnOH + писать формулы гидроксидов FeO(OH), Cr(OH) 3 , Zn(OH) 2 . Если бы гидроксиды образовались, то из растворов солей FeCl 3 , Cr 2 (SO 4) 3 и ZnBr 2 выпали бы осадки, чего не наблюдается (эти соли образуют прозрачные растворы).

Избыток катионов Н + легко обнаружить индикатором или измерить специальными приборами. Можно также

проделать такой опыт. В концентрированный раствор сильно гидролизующейся по катиону соли, например AlCl 3:



вносится магний или цинк. Последние прореагируют с Н + :



и будет наблюдаться выделение водорода. Этот опыт – дополнительное свидетельство протекания гидролиза катиона Al 3+ (ведь в раствор AlCl 3 мы не добавляли кислоту!).

Примеры заданий частей А, В

1. Сильный электролит – это

1) С 6 Н 5 ОН

2) СН 3 СООН

3) С 2 Н 4 (ОН) 2


2. Слабый электролит – это

1) иодоводород

2) фтороводород

3) сульфат аммония

4) гидроксид бария


3. В водном растворе их каждых 100 молекул образуется 100 катионов водорода для кислоты

1) угольной

2) азотистой

3) азотной


4-7. В уравнении диссоциации слабой кислоты по всем возможным ступеням

сумма коэффициентов равна


8-11. Для уравнений диссоциации в растворе двух щелочей набора

8. NaOH, Ва(ОН) 2

9. Sr(OH) 2 , Са(ОН) 2

10. КОН, LiOH

11. CsOH, Са(ОН) 2

общая сумма коэффициентов составляет


12. В известковой воде содержится набор частиц

1) СаОН+, Са 2+ , ОН -

2) Са 2+ , ОН - , Н 2 O

3) Са 2+ , Н 2 O, О 2-

4) СаОН + , О 2- , Н+


13-16. При диссоциации одной формульной единицы соли

14. К 2 Cr 2 O 7

16. Cr 2 (SO 4) 3

число образующихся ионов равно


17. Наибольшее количество иона РО 4 -3 можно обнаружить в растворе, содержащем 0,1 моль


18. Реакция с выпадением осадка – это

1) MgSO 4 + H 2 SO 4 >…

2) AgF + HNO 3 >…

3) Na 2 HPO 4 + NaOH >…

4) Na 2 SiO 3 + HCl >…


19. Реакция с выделением газа – это

1) NaOH + СН 3 СООН >…

2) FeSO 4 + КОН >…

3) NaHCO 3 + HBr >…

4) Pl(NO 3) 2 + Na 2 S >…


20. Краткое ионное уравнение ОН - + Н + = Н 2 O отвечает взаимодействию

1) Fe(OH) 2 + НCl >…

2) NaOH + HNO 2 >…

3) NaOH + HNO 3 >…

4) Ва(ОН) 2 + KHSO 4 >…


21. В ионном уравнении реакции

SO 2 + 2OН = SO 3 2- + Н 2 O

ион ОН - может отвечать реагенту

4) С 6 Н 5 ОН


22-23. Ионное уравнение

22. ЗСа 2+ + 2РO 4 3- = Са 3 (РO 4) 2 v

23. Са 2+ + НРO 4 2- = СаНРO 4 v

соответствует реакции между

1) Са(ОН) 2 и К 3 РO 4

2) СаCl 2 и NaH 2 PO 4

3) Са(ОН) 2 и Н 3 РО 4

4) СаCl и К 2 НРO 4


24-27. В молекулярном уравнении реакции

24. Na 3 PO 4 + AgNO 3 >…

25. Na 2 S + Cu(NO 3) 2 >…

26. Ca(HSO 3) 2 >…

27. K 2 SO 3 + 2HBr >… сумма коэффициентов равна


28-29. Для реакции полной нейтрализации

28. Fe(OH) 2 + HI >…

29. Ва(ОН) 2 + H 2 S >…

сумма коэффициентов в полном ионном уравнении составляет


30-33. В кратком ионном уравнении реакции

30. NaF + AlCl 3 >…

31. К 2 СO 3 + Sr(NO 3) 2 >…

32. Mgl 2 + К 3 РO 4 >…

33. Na 2 S + H 2 SO 4 >…

сумма коэффициентов равна


34-36. В водном растворе соли

34. Са(ClO 4) 2

36. Fe 2 (SO 4) 3

образуется среда

1) кислотная

2) нейтральная

3) щелочная


37. Концентрация гидроксид-иона увеличивается после растворения в воде соли


38. Нейтральная среда будет в конечном растворе после смешивания растворов исходных солей в наборах

1) ВаCl 2 , Fe(NO 3) 3

2) Na 2 CO 3 , SrS

4) MgCl 2 , RbNO 3


39. Установите соответствие между солью и ее способностью к гидролизу.




40. Установите соответствие между солью и средой раствора.




41. Установите соответствие между солью и концентрацией катиона водорода после растворения соли в воде.



Гидролиз - это взаимодействие веществ с водой, в результате которого изменяется среда раствора.

Катионы и анионы слабых электролитов способны взаимодействовать с водой с образованием устойчивых малодиссоциируемых соединений или ионов, в результате чего меняется среда раствора. Формулы воды в уравнениях гидролиза обычно записывают в виде Н‑ОН. При реакции с водой катионы слабых оснований отнимают от воды гидроксил ион, и в растворе образуется избыток Н + . Среда раствора становится кислотной. Анионы слабых кислот притягивают из воды Н + , и реакция среды становится щелочной.

В неорганической химии чаще всего приходится иметь дело с гидролизом солей, т.е. с обменным взаимодействием ионов соли с молекулами воды в процессе их растворения. Различают 4 варианта гидролиза.

1. Соль образована сильным основанием и сильной кислотой.

Такая соль гидролизу практически не подвергается. При этом равновесие диссоциации воды в присутствии ионов соли почти не нарушается, поэтому рН=7, среда нейтральная.

Na + + H 2 O Cl ‑ + H 2 O

2. Если соль образована катионом сильного основания и анионом слабой кислоты, то происходит гидролиз по аниону.

Na 2 CO 3 + HOH \(\leftrightarrow\) NaHCO 3 + NaOH

Так как в растворе накапливаются ионы ОН ‑ , то среда - щелочная, рН>7.

3. Если соль образована катионом слабого основания и анионом сильной кислоты, то гидролиз идет по катиону.

Cu 2+ + HOH \(\leftrightarrow\) CuOH + + H +

СuCl 2 + HOH \(\leftrightarrow\) CuOHCl + HCl

Так как в растворе накапливаются ионы Н + , то среда кислая, рН<7.

4. Соль, образованная катионом слабого основания и анионом слабой кислоты, подвергается гидролизу и по катиону и по аниону.

CH 3 COONH 4 + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

CH 3 COO ‑ + + HOH \(\leftrightarrow\) NH 4 OH + CH 3 COOH

Растворы таких солей имеют или слабокислую, или слабощелочную среду, т.е. величина рН близка к 7. Реакция среды зависит от соотношения констант диссоциации кислоты и основания. Гидролиз солей, образованных очень слабыми кислотой и основанием, является практически необратимым. Это, в основном, сульфиды и карбонаты алюминия, хрома, железа.

Al 2 S 3 + 3HOH \(\leftrightarrow\) 2Al(OH) 3 + 3H 2 S

При определении среды раствора солей необходимо учитывать, что среда раствора определяется сильным компонентом. Если соль образована кислотой, являющейся сильным электролитом, то среда раствора кислая. Если основание сильный электролит, то - щелочная.

Пример. Щелочную среду имеет раствор

1) Pb(NO 3) 2 ; 2) Na 2 CO 3 ; 3) NaCl; 4) NaNO 3

1) Pb(NO 3) 2 нитрат свинца(II). Соль образована слабым основанием и сильной кислотой , значит среда раствора кислая.

2) Na 2 CO 3 карбонат натрия. Соль образована сильным основанием и слабой кислотой, значит среда раствора щелочная.

3) NaCl; 4) NaNO 3 Соли образованы сильным основанием NaOH и сильными кислотами HCl и HNO 3 . Среда раствора нейтральная.

Правильный ответ 2) Na 2 CO 3

В растворы солей опустили индикаторную бумажку. В растворах NaCl и NaNO 3 она не изменила цвет, значит среда раствора нейтральная . В растворе Pb(NO 3) 2 окрасилась в красный цвет, среда раствора кислая. В растворе Na 2 СO 3 окрасилась в синий цвет, среда раствора щелочная.

 

Возможно, будет полезно почитать: