Ли у аммиачной буферной системы. Буферные растворы. Механизм их действия. Классификация буферных растворов

Буферными системами (буферами) называют растворы, обла­дающие свойством достаточно, стойко, сохранять постоянство - кон­центрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.

Буферные системы (смеси или растворы) по составу бывают двух основных типов :

а) из слабой кислоты и ее соли, образован­ной сильным основанием;

б) из слабого основания и его соли, образованной сильной кислотой.

На практике часто применяют следующие буферные смеси: ацетатный буфер CH 3 COOH + CH 3 COONa, бикарбонатный буфер H 2 CO 3 +NaHCO 3 , аммиачный буфер NH 4 OH +NH 4 Cl, белковый буфер белок кислота + белок соль, фосфатный буфер NaH 2 PO 4 + Na 2 HPO 4

Фосфатная буферная смесь состоит из двух солей, одна из ко­торых является однометаллической, а вторая - двухметаллической солью фосфорной кислоты.

Ацетатный буфер.

Рассмотрим механизм буферного действия . При добавлении соляной кислоты к ацетатному буферу проис­ходит взаимодействие с одним из компонентов смеси (СНзСООН); Из уравнения (а), сильная кислота заменяется эквивалентным количеством слабой кислоты (в данном случае НСl заменяется СН 3 СООН). В соответствии с законом разведения Оствальда повышение концентрации уксусной кислоты понижает степень ее диссоциации, а в результате этого концентрация ионов Н + в буфере увеличивается незначительно. При добавлении к буферному раствору щелочи концентрация водородных ионов и рН изменяется также незначительно. Щелочь при этом будет реагировать с другим компонентом буфера, (СН 3 СООН) по реакции нейтрализации. В результате этого добавленная щелочь заменяется эквивалентным количеством слабоосновной соли, в меньшей - степени влияющей на реакцию среды. Анионы СНзСОО~, образующиеся при диссоциации этой соли, будут оказывать некоторое Угнетающее действие на диссоциацию уксусной кислоты.

Буферные растворы в зависимости от своего состава делятся на 2 основных типа: кислотные и основные.

Приме­ром кислотного буфера может служить ацетатный буферный раствор, содержащий смесь уксусной кислоты и ацетата натрия (СНзСООН + СНзСООNа). При добавлении к такому раствору кисло­ты она взаимодействует с солью и вытесняет эквивалентное коли­чество слабой кислоты: СНзСООNа + НСl ó СН 3 СООН + NaСl. В растворе вместо сильной кислоты образуется слабая, и по­этому величина рН уменьшается незначительно. Если к этому буферному раствору добавить щелочь, она нейтра­лизуется слабой кислотой, и в растворе образуется эквивалентное количество соли: СНзСООН + NaОН ó СНзСООNа + Н 2 О. В результате рН почти не увеличивается. Для расчета рН в буферном растворе на примере ацетатного буфера рассмотрим процессы, в нем протекающие, и их влияние друг на друга. Ацетат натрия практически полностью диссоциирует на ионы, ацетат-ион подвергается гидролизу, как ион слабой кислоты: СНзСООNа -> Na + + СН 3 СОО~ СНзСОО - + НОН ó СНзСООН + ОН - . Уксусная кислота, также входящая в буфер, диссоциирует лишь в незначительной степени: СНзСООН ó СН 3 СОО+H -- Слабая диссоциация СНзСООН еще более подавляется в при-сутствии СНзСООNа, поэтому концентрацию недиссоциированной уксусной кислоты принимаем практически равной ее начальной концентрации:[СНзСООН] = с r . C другой стороны, гидролиз соли также подавлен наличием в растворе кислоты. Поэтому можно считать, что концентрация аце­тат-ионов в буферной смеси практически равна исходной концент­рации соли без учета концентрации ацетат-ионов, образующихся в результате диссоциации кислоты: [СНзСОО] = с с . Это уравнение называют уравнением буферного раствора (уравнением Гендерсона Гассельбаха ). Его анализ для буферного раствора, образованного слабой кислотой и ее солью, показывает, что концентрация водородных ионов в буферном растворе опреде­ляется константой диссоциации слабой кислоты и соотношением концентраций кислоты и соли. Уравнение Гендерсона-Хассельбаха для буферных систем основного типа:

31.Емкость буферных растворов и факторы, определяющие её. Буферные системы крови. Водородкарбонатный буфер. Фосфатный буфер.

Буферной емкостью (В) называется количество сильной кислоты или сильного основания, которое нужно прибавить к одному литру буферного раствора, чтобы изменить его рН на еди­ницу. Она выражается в моль/л или чаще в ммоль/л и опреде­ляется по формуле: В = (c V) / д pH Vб, где В - буферная емкость; с - концентрация сильной кислоты или основания (моль/л); V - объем добавленного сильного электролита (л); V б - объем буферного раствора (л); д рН - изменение рН.

Способность растворов поддерживать постоянное значение pH небезгранична. Буферные смеси можно различить по силе оказываемого ими сопротивления по отношению к действию кислот и оснований, вводимых в буферный раствор.

Количество кислоты или щелочи, которое нужно добавить к 1 л буферного раствора, чтобы значение его pH изменилось на единицу, называют буферной емкостью.

Таким образом, буферная емкость является количественной мерой буферного действия раствора. Буферный раствор имеет максимальную буферную емкость при pH = pK кислоты или основания, образующей смесь при соотношении ее компонентов, равном единице. Чем выше исходная концентрация буферной смеси, тем выше ее буферная емкость. Буферная емкость зависит от состава буферного раствора, концентрации и соотношения компонентов.

Нужно уметь правильно выбрать буферную систему. Выбор определяется необходимым интервалом pH. Зона буферного действия определяется силовым показателем кислоты (основания) ±1 ед.

При выборе буферной смеси необходимо учитывать химическую природу ее компонентов, так как вещества раствора, к которым добав-

ляется буферная система, могут образовывать нерастворимые соединения, взаимодействовать с компонентами буферной системы.

Определение.

В лабораторной практике часто приходится работать с растворами, которые имеют определенное значение рН. Такие растворы называют буферными.

Буферные растворы – растворы, рН которых практически не изменяется при добавлении к ним небольших количеств кислот и оснований или при их разбавлении.

Буферные растворы могут быть четырех типов:

1. Слабая кислота и её соль. Например, ацетатный буферный раствор СН 3 СООН + СН 3 СООNа (рН=4,7).

2. Слабое основание и его соль. Например, аммиачный буферный раствор NH 4 OH + NH 4 Cl (рН=9,2).

3. Раствор двух кислых солей. Например, фосфатный буферный раствор NaH 2 PO 4 + Na 2 HPO 4 (рН=8). В этом случае соль играет роль слабой кислоты.

Аминокислотные и белковые буферные растворы.

Механизм действия.

Действие буферных растворов основано на том, что ионы или молекулы буфера связывают ионы Н + или ОН - вводимых в них кислот или щелочей с образованием слабых электролитов. Например, если к ацетатному буферному раствору СН 3 СООН + СН 3 СООNа добавить соляную кислоту, то произойдет реакция:

СН 3 СООNа + НСl = СН 3 СООН + NаСl

СН 3 СОО - + Н + = СН 3 СООН

СН 3 СОО - ионы, взаимодействуя с катионами Н + соляной кислоты, образуют молекулы уксусной кислоты, в растворе не происходит накопление Н + , поэтому концентрация их практически не изменяется, а следовательно, не изменяется значение рН раствора.

При добавлении к ацетатному буферному раствору щелочи (например, NaОН) происходит реакция:

СН 3 СООН + NaОН = СН 3 СООNа + Н 2 О

СН 3 СООН + ОН - = СН 3 СОО - + Н 2 О

Катионы Н + уксусной кислоты соединяются с ОН - ионами щелочи, образуя воду. Концентрация кислоты уменьшается. Вместо израсходованных катионов Н + , в результате диссоциации уксусной кислоты СН 3 СООН, вновь появляются катионы Н + и их прежняя концентрация восстанавливается и значение рН раствора не изменяется.

Буферная емкость.

Всякий буферный раствор практически сохраняет постоянство рН лишь до прибавления определенного количества кислоты или щелочи, то есть обладает определенной буферной емкостью .

Буферная емкость – то предельное количество (моль) сильной кислоты или щелочи, которое можно добавить к 1 л буферного раствора, чтобы рН его изменился не более чем на единицу.

Приготовление.

Буферные свойства проявляются очень слабо, если концентрация одного компонента в 10 раз и более отличается от концентрации другого. Поэтому буферные растворы часто готовят смешением растворов равной концентрации обоих компонентов либо прибавлением к раствору одного компонента соответствующего количества реагента, приводящего к образованию равной концентрации сопряженной формы.

Для приготовления аммиачной буферной смеси смешивают 100 мл раствора NH 4 Cl с массовой долей его 10% и 100 мл раствора NH 4 OH с массовой долей 10% и разбавляют полученную смесь дистиллированной водой до 1 л.

Применение.

Буферные растворы широко применяются в химическом анализе, биохимическом анализе для создания и поддержания определенного значения рН среды при проведении реакций.

Например, ионы Ва 2+ отделяют от ионов Са 2+ осаждением дихромат-ионами Сr 2 О 7 2- в присутствии ацетатного буферного раствора; при определении многих катионов металлов с помощью трилона Б методом комплексонометрии используют аммиачный буферный раствор.

Буферные растворы обеспечивают постоянство биологических жидкостей и тканей. Главными буферными системами в организме являются гидрокарбонатная, гемоглобиновая, фосфатная и белковая. Причем, действие всех буферных систем взаимосвязано. Поступившие из вне или образовавшиеся в процессе обмена веществ ионы водорода связываются одним из компонентов буферных систем. Однако, при некоторых заболеваниях может происходить изменение значения рН крови. Смещение значения рН крови в кислую область от нормальной величины рН 7,4 называется ацидозом , в щелочную область – алкалозом. Ацидоз возникает при тяжелых формах сахарного диабета, длительной физической работе и при воспалительных процессах. При тяжелой почечной или печеночной недостаточности или при нарушении дыхания может возникнуть алкалоз.

ВВЕДЕНИЕ

БУФЕРНЫЕ РАСТВОРЫ (буферные смеси, буферы) - растворы, содержащие буферные системы и обладающие вследствие этого способностью поддерживать рН на постоянном уровне. Их обычно готовят путем растворения в воде взятых в соответствующих пропорциях слабой кислоты и ее соли, образованной щелочным металлом, частичной нейтрализацией слабой кислоты сильной щелочью или слабого основания сильной кислотой, растворением смеси солей многоосновной кислоты. Величина рН приготовленных таким образом буферных растворов незначительно меняется с температурой. Интервал значений рН, в котором буферный раствор обладает устойчивыми буферными свойствами, лежит в пределах рК ± 1 (рК - отрицательный десятичный логарифм константы диссоциации слабой кислоты, входящей в его состав). Наиболее известными буферными растворами являются: глициновый Серенсена, ацетатный Вальполя, фосфатный Серенсена, боратный Палича, вероналовый Михаэлиса, карбонатный Кольтгофа, трис-буфер, универсальный вероналовый Михаэлиса и др.

В лабораторной практике буферные растворы применяются для сохранения активной реакции среды на определенном неизменном уровне и для определения водородного показателя (рН) - в качестве стандартных растворов с устойчивыми значениями рН и др.

БУФЕРНЫЕ СМЕСИ

Если к раствору какой-либо кислоты или щелочи прибавить воду, то, разумеется, концентрация ионов водорода или гидроксила соответственно уменьшается. Но если прибавить некоторое количество воды к смеси уксусной кислоты и ацетата натрия или к смеси гидроокиси аммония и хлорида аммония, то концентрация ионов водорода и гидроксила в этих растворах не изменится.

Свойства некоторых растворов сохранять неизменной концентрацию ионов водорода при разбавлении, а также при добавлении небольших количеств сильных кислот или щелочей известно под названием буферного действия.

Растворы, содержащие одновременно какую-либо слабую кислоту и ее соль или какое-либо слабое основание и его соль и оказывающие буферное действие, называют буферными растворами. Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Присутствие в растворе слабой кислоты или слабого основания и их солей уменьшает влияние разбавления или действия других кислот и основании на рН раствора.

Такими буферными растворами являются следующие смеси СН 3 СООН+СН 3 С OON а, NH 4 OH + NH 4 Cl , Na 2 CO 3 + NaHCO 3 и др.

Буферный растворы, представляющие собой смеси слабых кислот и их солей, как правило имеют кислую реакцию (рН<7). Например, буферная смесь 0,1М раствора СН 3 СООР + 0,1М раствора СН 3 СО ONa имеет рН = 4,7.

Буферные растворы, представляющие собой смеси слабых основании и их солей, как правило, имеют щелочную реакцию (рН>7). Например, буферная смесь 0,1М раствора N Н 4 ОН + 0,1М раствора N Н 4 С1 имеет рН = 9,3.

Кислотно-основные буферные растворы

В широком смысле буферными называют системы, поддерживающие определенное значение какого-либо параметра при изменении состава. Буферные растворы могут быть

– кислотно-основными - поддерживают постоянное значение рН при добавлении небольших количеств кислоты или основания.

Окислительно-восстановительными – сохраняют постоянным потенциал системы при введении окислителей или восстановителей.

известны металлобуферные растворы, которые поддерживают постоянное значение рН.

Во всех случаях буферный раствор представляет собой сопряженную пару. В частности, кислотно-основные буферные растворы содержат сопряженную кислотно-основную пару. Буферное действие этих растворов обусловлено наличием кислотно-основного равновесия общего типа:

НА ↔ Н + + А -

кислота сопряженное

Основание

В + Н + ↔ ВН +

О снование сопряженная

Кислота

Так как в данном разделе рассматриваются только кислотно-основные буферные растворы, будем называть их буферными, опуская в названии «кислотно-основные».

Буферными растворами называют растворы, поддерживающие постоянное значение рН при разбавлении и добавлении небольших количеств кислоты или основания.

Классификация буферных систем

1. смеси растворов слабых кислот и их солей. Например, ацетатный буферный раствор.

2. смеси растворов слабых оснований и их солей. Например, аммонийный буферный раствор.

3. смеси растворов солей многоосновных кислот различной степени замещения. Например, фосфатный буферный раствор.

4. ионы и молекулы амфолитов. К ним относятся, например, аминокислоты и белковые буферные системы. Находясь в изоэлектрическом состоянии, аминокислоты и белки не являются буферными. Буферное действие проявляется только тогда, когда к ним добавляется некоторое количество кислоты или щелочи. При этом образуется смесь двух форм белка: а) слабая «белок кислота» + соль этой слабой кислоты; б) слабое «белок основание» + соль этого слабого основания. Таким образом, этот тип буферных систем можно отнести к буферным системам первого или второго типа.

Расчет рН буферных растворов

В основе расчета рН буферных систем лежит закон действующих масс для кислотно-основного равновесия. Для буферной системы, состоящей из слабой кислоты и ее соли, например, ацетатной, концентрацию ионов H + легко вычислить, исходя из константы равновесия уксусной кислоты:

CH 3 COOH ↔ CH 3 COO - + H +

(1).

Из (1) следует, что концентрация ионов водорода равна

(2)

В присутствии CH 3 COONa кислотно-основное равновесие уксусной кислоты сдвинуто влево. Поэтому концентрация недиссоциированной уксусной кислоты практически равна концентрации кислоты, т.е. [СН 3 COOH ] = с кисл.

Главный источник ацетат-ионов – сильный электролит CH 3 COONa :

CH 3 COONa → Na + + CH 3 COO - ,

Поэтому можно принять, что [ CH 3 COO - ] = с соли . С учетом сделанных допущений уравнение (2) принимает вид:

Отсюда получают уравнение Гендерсона-Хассельбаха для буферных систем, состоящих из слабой кислоты и ее соли:

(3)

Для буферной системы, состоящей из слабого основания и его соли, например, аммиачной, концентрацию ионов водорода в растворе можно рассчитать исходя из константы диссоциации слабого основания.

NH 3 × H 2 O = NH 4 OH ↔ NH 4 + + OH -

(4)

Выразим концентрацию ионов OH - из ионного произведения воды

(5)

и подставим в (4).

(6)

Из (6) следует, что концентрация ионов водорода равна

(7)

В присутствии NH 4 Cl кислотно-основное равновесие сдвинуто влево. Поэтому концентрация недиссоциированного аммиака практически равна концентрации аммиака, т.е. [ NH 4 OH ] = с осн.

Главный источник катионов аммония – сильный электролит NH 4 Cl :

NH 4 Cl → NH 4 + + Cl - ,

Поэтому можно принять, что [ NH 4 + ] = с соли . С учетом сделанных допущений уравнение (7) принимает вид:

(8)

Отсюда получают уравнение Гендерсона-Хассельбаха для буферных систем, состоящих из слабого основания и его соли:

(9)

Аналогичным образом можно рассчитать рН буферной системы, состоящей из смеси растворов солей многоосновных кислот различной степени замещения, например, фосфатной, состоящей из смеси растворов гидрофосфата (Na 2 HPO 4 ) и дигидрофосфата (NaH 2 PO 4 ) натрия. В основе ее действия лежит кислотно-основное равновесие:

H 2 PO 4 - ↔ Н + + HPO 4 2-

Слабая кислота сопряженное основание

(10)

Выразив из (10) концентрацию ионов водорода и сделав следующие допущения:

[ H 2 PO 4 - ] = c (H 2 PO 4 - ); [ HPO 4 2- ] = c (HPO 4 2- ), получим:

(11).

Прологарифмировав это выражение и поменяв знаки на противоположные, получим уравнение Гендерсона-Хассельбаха для рассчета рН фосфатной буферной системы

(12),

Где рК b (H 2 PO 4 - ) – отрицательный десятичный логарифм константы диссоциации

фосфорной кислоты по второй ступени; с (H 2 PO 4 - ) и с (HPO 4 2- ) соответственно концентрации кислоты и соли.

Свойства буферных растворов

Значение рН буферных растворов остается неизменным при разбавлении, что следует из уравнения Гендерсона-Хассельбаха. При разбавлении буферного раствора водой концентрации обоих компонентов смеси уменьшаются в одинаковое число раз. Следовательно, величина рН при этом не должна изменяться. Однако опыт показывает, что некоторое изменение рН, хотя и незначительное, все же происходит. Это объясняется тем, что уравнение Гендерсона-Хассельбаха является приближенным и не учитывает межионных взаимодействий. При точных расчетах следует учитывать изменение коэффициентов активности сопряженных кислоты и основания.

Буферные растворы мало изменяют рН при добавлении небольших количеств кислоты или основания. Способность буферных растворов поддерживать постоянство рН при добавлении к ним небольших количеств сильной кислоты или сильного основания, основана на том, что одна составная часть буферного раствора может взаимодействовать с H + прибавляемой кислоты, а другая с OH - прибавляемого основания. Вследствие этого буферная система может связывать как H + , так и OH - и до определенного предела сохранять постоянство величины рН. Продемонстрируем это на примере формиатной буферной системы, представляющей собой сопряженную кислотно-основную пару HCOOH / HCOO - . Равновесие в растворе формиатного буферного раствора можно представить уравнением:

HCOOH ↔ HCOO - + H +

При добавлении сильной кислоты сопряженное основание HCOO - связывает добавленные ионы H + , превращаясь в слабую муравьиную кислоту:

HCOO - + H + ↔ HCOOH

В соответствии с принципом Ле Шателье равновесие смещается влево.

При добавлении щелочи протоны муравьиной кислоты связывают добавленные ионы ОН - в молекулы воды:

HCOOH + ОН - → HCOO - + H 2 O

Кислотно-основное равновесие согласно Ле Шателье смещается вправо.

В обоих случаях происходят небольшие изменения в соотношении HCOOH / HCOO - , но логарифм этого соотношения меняется мало. Следовательно, незначительно меняется и рН раствора.

Сущность буферного действия

Действие буферных растворов основано на том, что отдельные компоненты буферных смесей связывают ионы водорода или гидроксила вводимых в них кислот и основании с образованием слабых электролитов. Например, если к буферному раствору, содержащему слабую кислоту НА n и соль этой кислоты Kt А n , прибавить щелочь, то произойдет реакция образования слабого электролита-воды:

Н + + ОН → Н 2 О

Следовательно, если к буферному раствору, содержащему кислоту, прибавить щелочь, то ионы водорода, образующиеся при электролитической диссоциации кислоты НА n , связываются с ионами гидроксила прибавленной щелочи, образуя слабый электролит-воду. Вместо израсходованных ионов водорода, вследствие последующей диссоциации кислоты НА n , появляются новые ионы водорода. В результате прежняя концентрация Н + - ионов в буферном растворе восстановятся до первоначального значения.

Если к указанной буферной смеси прибавить сильную кислоту, то произойдет реакция:

Н + + А n - → НА n

т.е. А n - - ионы, образующиеся при электролитической диссоциации соли К t А n , соединяясь с ионами водорода прибавленной кислоты, образуют молекулы слабой кислоты. Поэтому концентрация ионов водорода от прибавленной сильной кислоты к буферной смеси практически не изменится. Подобным же образом можно объяснить действие других буферных смесей.

Значение рН в буферных растворах

Меняя соотношения и можно получить буферные

растворы, отличающиеся плавным изменением рН от них минимально возможных значений. В водном растворе слабой кислоты

[ Н + ] = √K HAn * C HAn

откуда

pH = − lg [ Н + ] = − − lg K HAn − − lg C HAn

Но так как K HAn представляет собой постоянную величину, то ее лучшее представить в виде pK HAn т.е. показателя константы электролитической диссоциации: pK Han = − lg K HAn .

Тогда получим, что в водном растворе слабой кислоты:

рН = − lg [Н + ] = − − pK HAn − − pC HAn

По мере прибавления к водному раствору слабой кислоты ее соли рН раствора будет меняться.

Согласно уравнению, в растворе, содержащем смесь слабой кислоты и ее соли [Н + ] = K HAn

то

рН = − lg [Н + ] = − lg K HAn − lg C HAn + lg C Kt А n .

Аналогично выводим формулу применительно к слабым основаниям:

[ОН ] = √K KtOH * C KtOH

pOH = − lg [ ОН ] = − − lg K KtOH − − lg C KtOH

Концентрацию ионов водорода также выражают следующей формулой [Н + ] = , поэтому

рН = pK w − (− pK KtOH − − lg C KtOH )

Согласно уравнению, в растворе, содержащем смесь слабого основания и его соли

[ Н + ] =

т . е .

рН = − lg [ Н + ] = − lg K w + lg K KtOH − lgC Kt А n + lg C KtOH.

Нет никакой необходимости запоминать выведенные формулу значении рН, так как они очень легко выводятся путем логарифмирования простых формул, выражающих значение [Н + ].

Буферная емкость

Способность буферных растворов поддерживать постоянство значения рН небезгранична и зависит от качественного состава буферного раствора и концентрации его компонентов. При добавлении к буферному раствору значительных количеств сильной кислоты или щелочи наблюдается заметное изменение рН. причем для различных буферных смесей, отличающихся друг от друга по составу, отличающихся друг от друга по составу, буферное действие неодинаково. Следовательно, буферные смеси можно различать по силе оказываемого ими сопротивления по отношению к действию кислот и щелочей, вводимых в буферный раствор в одинаковых количествах и определенной концентрации. Предельное количество кислоты или щелочи определенной концентрации (в моль/л или г-экв/л), которое можно добавить к буферному раствору, чтобы значение рН его изменилось только на одну единицу, называют буферной емкостью.

Если величина [Н + ] одного буферного раствора изменяется при добавленной сильной кислоты меньше, чем величина [Н + ] другого буферного раствора при добавлении того же количества кислоты, то первая смесь обладает большей буферной емкостью. Для одного и того же буферного раствора буферная емкость тем больше, чем выше концентрация его компонентов.

Буферные свойства растворов сильных кислот и оснований.

Растворы сильных кислот и оснований при достаточно высокой концентрации тоже обладают буферным действием. Сопряженными системами в этом случае являются Н 3 О + /Н 2 О – для сильных кислот и ОН - /Н 2 О – для сильных оснований. Сильные кислоты и основания полностью диссоциированы в водных растворах и поэтому характеризуются высокой концентрацией ионов гидроксония или гидроксил - ионов. Добавление к их растворам небольших количеств сильной кислоты или сильного основания, поэтому оказывает лишь незначительное влияние на рН раствора.

Приготовление буферных растворов

1. Разбавлением в мерной колбе соответствующих фиксаналов.

2. Смешением рассчитанных по уравнению Гендерсона-Хассельбаха количеств подходящих сопряженных кислотно-основных пар.

3. Частичной нейтрализацией слабой кислоты сильной щелочью или слабого основания сильной кислотой.

Так как буферные свойства проявляются очень слабо, если концентрация одного компонента в 10 раз и более отличается от концентрации другого, буферные растворы часто готовят смешением растворов равной концентрации обоих компонентов или прибавлением к раствору одного компонента соответствующего количества реагента, приводящего к образованию равной концентрации сопряженной формы. В справочной литературе имеются подробные рецепты приготовления буферных растворов для различных значений рН.

Применение буферных растворов в химическом анализе

Буферные растворы широко применяют в химическом анализе в тех случаях, когда по условиям опыта химическая реакция должна протекать при соблюдении точного значения рН, не меняющегося при разбавлении раствора или при добавлении к нему других реагентов. Например, при проведении реакции окисления-восстановления, при осаждении сульфидов, гидроокисей, карбонатов, хроматов, фосфатов и др.

Приведем некоторые случаи использования их в целях анализа:

Ацетатный буферный раствор (СНзСООН + СН 3 СОО Na ; рН = 5) применяют при осаждении осадков, неосаждаемых в кислых или щелочных растворах. Вредное влияние кислот подавляет ацетат натрия, который вступает в реакцию с сильной кислотой. Например:

НС1 + СН 3 СОО N а → СН 3 СООН + Na С1

или в ионной форме

Н + + СН 3 СОО → СН 3 СООН.

Аммиачно -аммонийный буферный раствор (N Н 4 ОН + N Н 4 С1; рН = 9) применяют при осаждении карбонатов бария, стронция, кальция и отделения их от ионов магния; при осаждении сульфидов никеля, кобальта, цинка, марганца, железа; а также при выделении гидроокисей алюминия, хрома, бериллия, титана, циркония, железа и т.п.

Формиатный буферный раствор (НСООН + НСОО N а; рН = 2) применяют при отделении ионов цинка, осаждаемых в виде ZnS в присутствии ионов кобальта, никеля, марганца, железа, алюминия и хрома.

Фосфатный буферный раствор (N а 2 НРО 4 + N аН 2 РО; рН = 8) использует при проведении многих реакции окисления-восстановления.

Для успешного применения буферных смесей в целях анализа необходимо помнить о том, что не всякая буферная смесь пригодна для анализа. Буферную смесь выбирают в зависимости от ее назначения. Она должна удовлетворять определенному качественному составу, а ее компоненты должны присутствовать в растворе в определенных количествах, так как действие буферных смесей зависит от соотношения концентрации их компонентов.

Выше перечисленное можно представить в виде таблицы.

Буферные растворы, применяемые в анализе

Буферная смесь

Состав смеси

(при молярном соотношении 1:1)

рН

Формиатная

Муравьиная кислота и формиат натрия

Бензоатная

Бензойная кислота и бензоат аммония

Ацетатная

Уксусная кислота и ацетат натрия

Фосфатная

Одназамещенный и двухзамещенный фосфат натрия

Аммонийная

Гидроксид аммония и хлорид аммония

Буферным действием обладают также смеси кислых солей с различной замещенностью водорода металлом. Например, в буферной смеси дигидрофосфата и гидрофосфата натрия первая соль играет роль слабой кислоты, а вторая роль ее соли.

Варьируя концентрацию слабой кислоты и ее соли, удается получить буферные растворы с заданными величинами рН.

В животных и растительных организмах также действуют сложные буферные системы, поддерживающие постоянными рН крови, лимфы и других жидкостей. Буферными свойствами обладает и почва, которой свойственно противодействовать внешним факторам, изменяющим рН почвенного раствора, например при введении в почву кислот или основании.

ЗАКЛЮЧЕНИЕ

Итак, буферными растворами называют растворы, поддерживающие постоянное значение рН при разбавлении и добавлении небольших количеств кислоты или основания. Важным свойством буферных растворов является их способность сохранять постоянное значение рН при разбавлении раствора. Растворы кислот и оснований не могут называться буферными растворами, т.к. при разбавлении их водой рН раствора изменяется. Наиболее эффективные буферные растворы готовят из растворов слабой кислоты и ее соли или слабого основания и его соли

Буферные растворы можно рассматривать как смеси электролитов, имеющих одноименные ионы. Буферные растворы играют важную роль во многих технологических процессах. Они используются, например, при электрохимическом нанесении защитных покрытий, в производстве красителей, кожи, фотоматериалов. Широко используют буферные растворы в химическом анализе и для калибровки рН-метров.

Многие биологические жидкости являются буферными растворами. Например, рН крови в организме человека поддерживается в пределах от 7,35 до 7,45; желудочного сока от 1,6 до 1,8; слюны от 6,35 до 6,85. Компонентами таких растворов являются карбонаты, фосфаты и белки. В бактериологических исследованиях при выращивании бактерий тоже приходится использовать буферные растворы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Крешков А.П. Основы аналитической химии. Кн.1. - М: Химия, 1965г. -498 с.

2. Цитович И.К. Курс аналитической химии: Учебник для вузов. - СПб.: «Лань», 2007г.- 496 с.

3. Крешков А.П., Ярославцев А.А. Курс аналитической химии. Кн.1. Качественный анализ.- 2-е изд.переработанное. - М.:Химия, 1964г - 432 с.

4. Химия: справочник для старшеклассников и поступающих в вузы / Под ред. Лидии Р.А., Аликберова Л.Ю. - М.:АСТ-ПРЕСС ШКОЛА, 2007г. -512с.

5. Осипов Ю.С., Большая Российская энциклопедия: в 30 т. Т.4.- М.: Большая Российская энциклопедия 2006г. - 751 с.

6. Михайленко Я.И., Введение в химический анализ, Госхимтехиздат, 1933г.

Одним из основных свойств живых организмов является поддержание кислотно-основного гомеостаза на определенном уровне. Протолитический гомеостаз – постоянство рН биологических жидкостей, тканей и органов. Это находит выражение в достаточно постоянных значениях рН биологических сред (крови, слюны, желудочного сока и т.д.) и способности организма восстанавливать нормальные значения рН при воздействии протолитов. Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсацию), но и физико-химические: буферное действие, ионный обмен и диффузию.

Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.

Различают в основном протолитические буферные растворы двух типов:

    Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН 3 СООН и СН 3 СООNa - ацетатный буфер

СН 3 СООН + Н 2 О ↔ Н 3 О + + СН 3 СОО - избыток сопряженного

основания

СН 3 СООNa → Na + + CH 3 COO -

    Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH 4 OH и NH 4 Cl – аммиачный буфер.

NH 3 + H 2 O ↔ OH - + NH 4 + избыток

Основание

сопряженной

NH 4 Cl → Cl - + NH 4 + кислоты

Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:

рН = рК + ℓg , pOH = pK + ℓg
,

где рК = -ℓg К Д.

С – молярная или эквивалентная концентрация электролита (C = V N)

Механизм действия буферных растворов

Рассмотрим его на примере ацетатного буфера: СН 3 СООН + СН 3 СООNa

Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.

    При добавлении небольшого количества хлороводородной кислоты, ионы Н + связываются с имеющимся в растворе сопряженным основанием СН 3 СОО - в слабый электролит СН 3 СООН.

CH 3 COO ‾ +H + ↔ CH 3 COOH (1)

Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН 3 СООН. Количество СН 3 СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н + в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.

При добавлении кислоты к буферу рН определяется по формуле:

рН = рК + ℓg

    При добавлении к буферу небольшого количества щелочи протекает реакция её с СН 3 СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н 2 О и СН 3 СОО ‾:

CH 3 COOН + OH ‾ ↔ CH 3 COO ‾ + H 2 O (2)

В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH 3 COONa. Количество СН 3 СООН убывает и по закону разбавления В. Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН 3 СООН. Следовательно, концентрация ионов Н + практически не изменяется. рН остаётся постоянным.

При добавлении щелочи рН определяется по формуле:

рН = рК + ℓg

    При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.

Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.

Для количественной характеристики буфера вводится понятие буферной ёмкости.

Глава 6. ПРОТОЛИТИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ

Глава 6. ПРОТОЛИТИЧЕСКИЕ БУФЕРНЫЕ СИСТЕМЫ

Изменение любого фактора, могущего влиять на состояние химического равновесия системы веществ, вызывает в ней реакцию, стремящуюся противодействовать производимому изменению.

А. Ле Шателье

6.1. БУФЕРНЫЕ СИСТЕМЫ. ОПРЕДЕЛЕНИЕ И ОБЩИЕ ПОЛОЖЕНИЯ ТЕОРИИ БУФЕРНЫХ СИСТЕМ. КЛАССИФИКАЦИЯ БУФЕРНЫХ СИСТЕМ

Системы, поддерживающие протолитический гомеостаз, включают в себя не только физиологические механизмы (легочная и почечная компенсация), но и физико-химическое буферное действие, ионный обмен, диффузию. Поддержание на заданном уровне кислотно-основного равновесия обеспечивается на молекулярном уровне действием буферных систем.

Протолитическими буферными системами называются растворы, сохраняющие постоянное значение pH как при добавлении кислот и щелочей, так и при разведении.

Способность некоторых растворов сохранять неизменной концентрацию ионов водорода получила название буферного действия, которое является основным механизмом протолитического гомеостаза. Буферные растворы - это смеси слабого основания или слабой кислоты и их соли. В буферных растворах главными «действующими» компонентами являются донор и акцептор протонов, согласно теории Брёнстеда, или донор и акцептор электронной пары, согласно теории Льюиса, представляющие собой кислотно-основную пару.

По принадлежности слабого электролита буферной системы к классу кислот или оснований и по типу заряженной частицы они делятся на три типа: кислотный, основной и амфолитный. Раствор, содержащий одну или несколько буферных систем, называется буферным раствором. Буферные растворы можно приготовить двумя способами:

Частичной нейтрализацией слабого электролита сильным электролитом:

Смешиванием растворов слабых электролитов с их солями (или двух солей): CH 3 COOH и CH 3 COONa; NH 3 и NH 4 Cl; NaH 2 PO 4

и Na 2 HPO 4 .

Причина возникновения в растворах нового качества - буферного действия - заключается в совмещении нескольких протолитических равновесий:

Сопряженные кислотно-основные пары B/BH + и A - /HA называют буферными системами.

В соответствии с принципом Ле Шателье добавление в раствор слабой кислоты HB + H 2 O ↔ H 3 O + + B - сильной кислоты или соли, содержащей анионы B - , происходит процесс ионизации, смещающий равновесие влево (эффект общего иона) B - + H 2 O ↔ HB + OH - , а добавление щелочи (OH -) - вправо, так как вследствие реакции нейтрализации уменьшится концентрация ионов гидроксония.

При совмещении двух изолированных равновесий (ионизации кислоты и гидролиза по аниону) оказывается, что процессы, которые в них будут протекать при воздействии одних и тех же внешних факторов (добавлении ионов гидроксония и гидроксид-ионов), разнонаправле-ны. Кроме того, концентрация одного из продуктов каждой из совмещенных реакций влияет на положение равновесия другой реакции.

Протолитическая буферная система представляет собой совмещенное равновесие процессов ионизации и гидролиза.

Уравнение буферной системы выражает зависимость pH буферного раствора от состава буферной системы:

Анализ уравнения показывает, что величина pH буферного раствора зависит от природы веществ, образующих буферную систему, соотношения концентрации компонентов и температуры (так как от нее зависит величина pKa).

Согласно протолитической теории, кислоты, основания и амфоли-ты являются протолитами.

6.2. ТИПЫ БУФЕРНЫХ СИСТЕМ

Буферные системы кислотного типа

Кислотные буферные системы представляют собой смесь слабой кислоты HB (донор протона) и ее соли B - (акцептор протона). Они, как правило, имеют кислую среду (pH <7).

Гидрокарбонатная буферная система (зона буферного действия pH 5,4-7,4) - смесь слабой угольной кислоты H 2 CO 3 (донор протона) и ее соли HCO 3 - (акцептор протона).

Гидрофосфатная буферная система (зона буферного действия pH 6,2-8,2) - смесь слабой кислоты H 2 PO 4 - (донор протона) и ее соли HPO 4 2- (акцептор протона).

Гемоглобиновая буферная система представлена двумя слабыми кислотами (доноры протонов) - гемоглобином HHb и оксигемоглоби-ном HHbO 2 и сопряженными им слабыми основаниями (акцепторами протонов) - соответственно гемоглобинат - Hb - и оксигемоглобинат-анионами HbO 2 - .

Буферные системы основного типа

Основные буферные системы представляют собой смесь слабого основания (акцептор протона) и его соли (донор протона). Они, как правило, имеют щелочную среду (pH >7).

Аммиачная буферная система: смесь слабого основания NH 3 H 2 O (акцептор протона) и его соли - сильного электролита NH 4 + (донор протона). Зона буферного действия при pH 8,2-10,2.

Буферные системы амфолитного типа

Амфолитные буферные системы состоят из смеси двух солей или из соли слабой кислоты и слабого основания, например CH 3 COONH 4 , в котором CH 3 COO - проявляет слабые основные свойства - акцептор протона, а NH 4 + - слабая кислота - донор протона. Биологически значимой буферной системой амфолитного типа является белковая буферная система - (NH 3 +) m -Prot-(CH 3 COO -) n .

Буферные системы можно рассматривать как смесь слабого и силъ-ного электролитов, имеющих одноименные ионы (эффект общего иона). Например, в ацетатном буферном растворе - ацетат-ионы, а в гидрокарбонатном - карбонат-ионы.

6.3. МЕХАНИЗМ ДЕЙСТВИЯ БУФЕРНЫХ РАСТВОРОВ И ОПРЕДЕЛЕНИЕ PH В ЭТИХ РАСТВОРАХ. УРАВНЕНИЕ ГЕНДЕРСОНА-ХАССЕЛЬБАХА

Механизм действия буферных растворов кислотного типа рассмотрим на примере ацетатной буферной системы CH 3 COO - /CH 3 COOH, в основе действия которой лежит кислотно-основное равновесие CH 3 COOH ↔ H + + CH 3 COO - (K И = 1,75 10 -5). Главный источник ацетат-ионов - сильный электролит CH 3 COONa. При добавлении сильной кислоты сопряженное основание CH 3 COO - связывает добавленные катионы водорода, превращаясь в слабую кислоту: CH 3 COO - + + H + ↔ CH 3 COOH (кислотно-основное равновесие смещается влево). Уменьшение концентрации CH 3 COO - уравновешивается повышением концентрации слабой кислоты и указывает на процесс гидролиза. Согласно закону разведения Оствальда, увеличение концентрации кислоты несколько понижает ее степень электролитической диссоциации и кислота практически не ионизирует. Следовательно, в системе: С к увеличивается, С с и α уменьшается, - const, С к /С с увеличивается, где C к - концентрация кислоты, С с - концентрация соли, α - степень электролитической диссоциации.

При добавлении щелочи катионы водорода уксусной кислоты высвобождаются и нейтрализуются добавленными ионами OH - , связываясь в молекулы воды: CH 3 COOH + OH - → CH 3 COO - + H 2 O

(кислотно-основное равновесие смещается вправо). Следовательно, С к увеличивается, С с и α уменьшается, - const, С к /С с уменьшается.

Механизм действия буферных систем основного и амфолитного типов аналогичен. Буферное действие раствора обусловлено смещением кислотно-основного равновесия за счет связывания добавляемых Н + и ОН - ионов компонентами буфера и образования малодиссоции-рующих веществ.

Механизм действия белкового буферного раствора при добавлении кислоты: (NH 3 +) m -Prot-(COO -) n + n H + (NH 3 +) m -Prot-(COOH) n , при добавлении щелочи - (NH 3 +) m -Prot-(COO -) n + m OH - (NH 2) m - Prot-(COO -) n + mH 2 O.

При больших концентрациях Н + и ОН - (больше 0,1 моль/л) значительно изменяется соотношение компонентов буферной смеси - С к /С с увеличивается или уменьшается и pH может измениться. Подтверждением этого является уравнение Гендерсона-Хассельбаха, которое устанавливает зависимость [Н + ], К И, α и С к /С с. Уравнение

выводим на примере буферной системы кислотного типа - смеси уксусной кислоты и ее соли СН 3 СОONа. Концентрация ионов водорода в буферном растворе определяется константой ионизации уксусной кислоты:


Уравнение показывает, что концентрация ионов водорода находится в прямой зависимости от К И, α, концентрации кислоты С к и в обратной зависимости от С с и соотношения С к /С с. Логарифмируя обе части уравнения и взяв логарифм со знаком минус, получим уравнение в логарифмической форме:

Уравнение Гендерсона-Хассельбаха для буферных систем основного и амфолитного типов выводится на примере вывода уравнения для буферных систем кислотного типа.

Для буферной системы основного типа, например аммиачной, концентрацию катионов водорода в растворе можно рассчитать, исходя из константы кислотно-основного равновесия сопряженной кислоты

NH4 + :

Уравнение Гендерсона-Хассельбаха для буферных систем основного типа:

Данное уравнение можно представить в виде:

Для фосфатной буферной системы HPO 4 2- /H 2 PO 4 - pH можно рассчитать по уравнению:

где pK 2 - константа диссоциации ортофосфорной кислоты по второй ступени.

6.4. ЕМКОСТЬ БУФЕРНЫХ РАСТВОРОВ И ОПРЕДЕЛЯЮЩИЕ ЕЕ ФАКТОРЫ

Способность растворов поддерживать постоянное значение pH небезгранична. Буферные смеси можно различить по силе оказываемого ими сопротивления по отношению к действию кислот и оснований, вводимых в буферный раствор.

Количество кислоты или щелочи, которое нужно добавить к 1 л буферного раствора, чтобы значение его pH изменилось на единицу, называют буферной емкостью.

Таким образом, буферная емкость является количественной мерой буферного действия раствора. Буферный раствор имеет максимальную буферную емкость при pH = pK кислоты или основания, образующей смесь при соотношении ее компонентов, равном единице. Чем выше исходная концентрация буферной смеси, тем выше ее буферная емкость. Буферная емкость зависит от состава буферного раствора, концентрации и соотношения компонентов.

Нужно уметь правильно выбрать буферную систему. Выбор определяется необходимым интервалом pH. Зона буферного действия определяется силовым показателем кислоты (основания) ±1 ед.

При выборе буферной смеси необходимо учитывать химическую природу ее компонентов, так как вещества раствора, к которым добав-

ляется буферная система, могут образовывать нерастворимые соединения, взаимодействовать с компонентами буферной системы.

6.5. БУФЕРНЫЕ СИСТЕМЫ КРОВИ

Кровь содержит 4 основные буферные системы.

1.Гидрокарбонатная. На ее долю приходится 50% емкости. Она работает главным образом в плазме и играет центральную роль в транспорте СО 2 .

2.Белковая. На ее долю приходится 7% емкости.

3.Гемоглобиновая, на нее приходится 35% емкости. Она представлена гемоглобином и оксигемоглобином.

4.Гидрофосфатная буферная система - 5% емкости. Гидрокарбонатная и гемоглобиновая буферные системы выполняют

центральную и чрезвычайно важную роль в транспорте СО 2 и установлении pH. В плазме крови pH 7,4. СО 2 - продукт клеточного метаболизма, выделяющийся в кровь. Диффундирует через мембрану в эритроциты, где реагирует с водой с образованием Н 2 СО 3 . Соотношение устанавливается равным 7, и pH будет 7,25. Кислотность повышается, при этом имеют место реакции:

Образующийся НСО 3 - выходит через мембрану и уносится током крови. В плазме крови при этом pH 7,4. Когда венозная кровь вновь попадает в легкие, гемоглобин реагирует с кислородом с образованием оксигемоглобина, который является более сильной кислотой: ННb + + O 2 ↔ НHbО 2 . pH понижается, так как образуется более сильная кислота, происходит реакция: НHbО 2 + НСО 3 - ↔ HbO 2 - + Н 2 СO 3 . Затем СО 2 выделяется в атмосферу. Таков один из механизмов транспорта СО 2 и О 2 .

Гидратация и дегидратация СО 2 катализируется ферментом карбо-ангидразой, которая имеется в эритроцитах.

Основания также связываются буферным раствором крови и выделяются с мочой, главным образом в виде одно- и двузамещенных фосфатов.

В клиниках всегда определяют резервную щелочность крови.

6.6. ВОПРОСЫ И УПРАЖНЕНИЯ ДЛЯ САМОПРОВЕРКИ ПОДГОТОВЛЕННОСТИ К ЗАНЯТИЯМ И ЭКЗАМЕНАМ

1.При совмещении каких протолитических равновесий растворы будут обладать буферными свойствами?

2.Дать понятие о буферных системах и буферном действии. Каков химизм буферного действия?

3.Основные типы буферных растворов. Механизм их буферного действия и уравнение Гендерсона-Хассельбаха, определяющее pH в буферных системах.

4.Основные буферные системы организма и их взаимосвязь. От чего зависит pH буферных систем?

5.Что называют буферной емкостью буферной системы? Какая из буферных систем крови обладает наибольшей емкостью?

6.Способы получения буферных растворов.

7.Выбор буферных растворов для медико-биологических исследований.

8.Определить, ацидоз или алкалоз наблюдается у больного, если концентрация ионов водорода в крови равна 1,2.10 -7 моль/л?

6.7. ТЕСТОВЫЕ ЗАДАНИЯ

1. Какая из предложенных систем является буферной?

а)HCl и NaCl;

б)H 2 SO 4 и NaHSO 4 ;

в)H 2 CO 3 и NaHCO 3 ;

г)HNO 3 и NaNO 3 ;

д)HClO 4 и NaClO 4 .

2. Для какой из предложенных буферных систем соответствует расчетная формула pH = рК?

а)0,1 М р-р NaH 2 PO 4 и 0,1 М р-р Na 2 HPO 4 ;

б)0,2 М р-р H 2 CO 3 и 0,3 М р-р NaHCO 3 ;

в)0,4 М р-р NH 4 OH и 0,3 М р-р NH 4 Cl;

г)0,5 М р-р СН 3 СООН и 0,8 М р-р CH 3 COONa;

д)0,4 М р-р NaHCO 3 и 0,2 М р-р Н 2 CO 3 .

3. Какая из предложенных буферных систем является бикарбонатной буферной системой?

а) NH 4 OH и NH 4 Cl;

б)Н 2 СО 3 и КНСО 3 ;

в)NaH 2 PO 4 и Na 2 HPO 4 ;

г)СН 3 СOOН и СН 3 СООК;

д)K 2 HPO 4 и КН 2 РО 4 .

4. При каких условиях pH буферной системы равна рК к?

а)когда равны концентрация кислоты и ее соли;

б)когда не равны концентрация кислоты и ее соли;

в)когда соотношение объемов кислоты и ее соли равно 0,5;

г)когда соотношение объемов кислоты и ее соли при одинаковых концентрациях не равно;

д)когда концентрация кислоты больше концентрации соли в 2 раза.

5. Какая из предложенных формул подойдет для расчета [Н+], для системы СН 3 СООН и СН 3 СOOК?

6. Какая из ниже перечисленных смесей входит в состав буферной системы организма?

а)HCl и NaCl;

б)H 2 S и NaHS;

в)NH 4 OH и NH 4 Cl;

г)H 2 CO 3 и NaНСО 3 ;

д)Ba(OH) 2 и BaOHCl.

7. К какому типу кислотно-основных буферных систем относится белковый буфер?

а)слабая кислота и ее анион;

в)анионы 2 кислых солей;

д)ионы и молекулы амфолитов.

8. К какому типу кислотно-основных буферных систем относится аммиачный буфер?

а)слабая кислота и ее анион;

б)анионы кислой и средней соли;

в)анионы 2 кислых солей;

г)слабое основание и его катион;

д)ионы и молекулы амфолитов.

9. К какому типу кислотно-основных буферных систем относится фосфатный буфер?

а)слабая кислота и ее анион;

б)анионы кислой и средней соли;

в)анионы 2 кислых солей;

г)слабое основание и его катион;

д)ионы и молекулы амфолитов.

10. Когда белковая буферная система не является буфером?

а)в изоэлектрической точке;

б)при добавлении щелочи;

в)при добавлении кислоты;

г)в нейтральной среде.

11. Какая из предложенных формул подойдет для расчета [ОН - ] системы: NH 4 OH и NH 4 Cl?

Общая химия: учебник / А. В. Жолнин; под ред. В. А. Попкова, А. В. Жолнина. - 2012. - 400 с.: ил.

 

Возможно, будет полезно почитать: