Формоизменяющие операции листовой штамповки. Формовка и отбортовка. Отбортовка отверстий Отбортовка отверстий

металл отверстие штамповочный сверхпластичность

Отбортовка отверстий широко используется в штамповочном производстве, заменяя операции вытяжки с последующей вырубкой дна. Особенно эффективно применяется отбортовка отверстий при изготовлении деталей с большим фланцем, когда вытяжка затруднительна и требует нескольких переходов. В настоящее время путем отбортовки получают отверстия диаметром 3 ч 1000 мм и толщиной материала 0,3 ч 30 мм.

Под отбортовкой понимают операцию холодной листовой штамповки, в результате которой по внутреннему (внутренняя отбортовка) или наружному (наружная отбортовка) контуру заготовки образуется борт. В основном выполняют внутреннюю отбортовку круглых отверстий. Образование борта в этом случае осуществляется за счет вдавливания в отверстие матрицы части заготовки с предварительно или одновременно с отбортовкой пробитым отверстием. Схема отбортовки круглых отверстий показана на рисунке 2.1. Разновидностью отбортовки является отбортовка с утонением стенки.

Рисунок 2.1 - Схемы отбортовки круглых отверстий: а) сферическим пуансоном; б) цилиндрическим пуансоном

Отбортовку круглых отверстий выполняют сферическим (рисунок 2.1а ) или цилиндрическим пуансоном (рисунок 2.1б ). В последнем случае рабочий конец пуансона выполняют в виде фиксатора (ловителя), обеспечивающего центрирование заготовки по отверстию, с коническим переходом к рабочей части диаметра d п.

Деформация металла при отбортовке характеризуется следующими изменениями: удлинением в тангенциальном направлении и уменьшением толщины материала, о чем свидетельствует радиально-кольцевая сетка, нанесенная на заготовку (рисунок 2.2). Расстояния между концентрическими окружностями остаются без значительных изменений.

Рисунок 2.2 - Заготовка до и после отбортовки

Степень деформации при отбортовке отверстий определяется соотношением между диаметром отверстия в заготовке d и диаметром борта D или так называемым коэффициентом отбортовки:

К = d /D ,

где D определяется по средней линии (см. рисунок 2.2).

Если коэффициент отбортовки превышает предельную величину К пред, то на стенках борта образуются трещины.

Предельный для данного материала коэффициент отбортовки может быть аналитически рассчитан по формуле:

где h - коэффициент, определяемый условиями отбортовки;

d - относительное удлинение, определяемое из испытаний на растяжение.

Величина предельного коэффициента отбортовки зависит от следующих факторов:

1) характера обработки и состояния кромок отверстий (сверление или пробивка, наличие или отсутствие заусенцев);

2) относительной толщины заготовки s /D ;

3) рода материала и его механических свойств;

4) формы рабочей части пуансона.

Существует прямая зависимость предельно допустимого коэффициента отбортовки от относительной толщины заготовки, т. е. с уменьшением d /s величина предельно допустимого коэффициента отбортовки К пред уменьшается и увеличивается степень деформации. Кроме того, величина К пред зависит от способа получения отбортовываемого отверстия, что показано в таблице 2.1 для малоуглеродистой стали. В таблице 2.2 приведены предельные значения коэффициента отбортовки для цветных материалов.

Допустимая величина утонения стенки борта при отбортовке вследствие дефектов края отверстия (заусенцы, наклеп и т. п.) значительно ниже, чем величина поперечного сужения при испытании на растяжение. Наименьшая толщина у края борта составляет:

Таблица 2.1 - Расчетные значения К пред для малоуглеродистой стали

Тип пуансона

Способ получения отверстия

Значения К пред в зависимости от d /s

сферический

пробивка в штампе

цилиндрический

сверление с зачисткой заусенцев

пробивка в штампе

Расчет технологических параметров отбортовки круглых отверстий осуществляют следующим образом. Исходными параметрами являются внутренний диаметр D вн отбортованного отверстия и высота борта Н , заданные чертежом детали. По указанным параметрам рассчитывают требуемый диаметр d технологического отверстия.

Таблица 2.2 - Значения К пред для цветных металлов и сплавов

Для относительно высокого борта расчет диаметра d выполняют исходя из равенства объемов заготовки до и после отбортовки:

где D 1 = d п + 2(r м + s ).

В данной формуле геометрические параметры определяются согласно рисунку 2.1.

Для низкого борта расчет можно выполнять из условия обычной гибки в радиальном сечении:

d = D + 0,86r м - 2Н - 0,57s .

Затем проверяют возможность отбортовки за один переход. Для этого сравнивают коэффициент отбортовки (см. стр.14) с предельным значением К пред: К > К пред.

Усилие отбортовки круглых отверстий цилиндрическим пуансоном может быть приближенно определено по формуле

где s Т - предел текучести материала.

Характер изменения усилия при отбортовке показан на рисунке 2.3 в зависимости от формы очертания рабочей части пуансона.


Рисунок 2.3 - Диаграммы усилия и переходы отбортовки круглых отверстий при различной форме пуансона: а) криволинейной; б) сферической; в) цилиндрической

Отбортовка отверстий широко используется в штамповочном производстве, заменяя операции вытяжки, с последующей вырубкой дна. Особенно значительную эффективность дает применение этого процесса при изготовлении деталей с большим фланцем, когда вытягивание затруднительно и требует нескольких переходов.

Деформация металла при отбортовке характеризуется изменением радиально-кольцевой сетки, нанесенной на заготовку (рис. 8.57) . При отбортовке отверстий происходит удлинение в тангенциальном направлении и уменьшение толщины. Расстояния между концентрическими окружностями остаются без значительных изменений.

Геометрические размеры при отбортовке определяют исходя из равенства объемов заготовки и детали . Обычно высота борта бывает задана чертежом детали. В этом случае диаметр отверстия под отбортовку примерно подсчитывают, как для простой гибки. Это допустимо благодаря небольшой величине деформаций в радиальном направлении и наличии значительного истончения материала.

Рисунок. 8.57. Схема отбортовки

Диаметр отверстия определяют по формуле :

  • d = D-2 (Н-0, 43r - 0,72 S), (8.96)

Высота борта выражается зависимостью:

  • H = (Dd)/2 + 0,43r + 0,72S , (8.74)
где обозначения соответствуют (рис. 8.57).

Как видно из последней формулы, высота борта при прочих равных условиях зависит от радиуса закругления. При больших радиусах закругления высота борта значительно увеличивается.

Исследования Р. Вилкена показали, что при увеличении зазора между пуансоном и матрицей до z = (8 ÷ 10) S) происходит естественное увеличение высоты и радиуса закругления борта (рис. 8.58) .

Степень деформации кромки борта при этом не увеличивается, так как диаметр заготовки не меняется. Но вследствие того, что в очаг вовлекается большое количество металла, деформация борта рассредоточивается, а истончение кромки несколько уменьшается. Установлено, что при увеличении зазора до z = (8 ÷ 10) S усилия отбортовки уменьшается на 30 - 35%. Следовательно, соответствующим образом снижаются напряжения в стенках, так как от их величины зависит сопротивление металла деформированию и усилия отбортовки.

Таким образом, этот процесс лучше производить при большой величине зазора между пуансоном и матрицей или при значительно увеличенном радиусе закругления матрицы . Такая отбортовка, характеризуемая большим радиусом закругления, но малой цилиндрической частью борта, вполне приемлема в тех случаях, когда она производится для увеличения жесткости конструкции при малой ее массе.

Процесс с малым радиусом закруглений и большой цилиндрической частью борта может применяться лишь при отбортовке небольших отверстий под резьбу или запрессовке осей или когда конструктивно необходимо иметь цилиндрические отбортованные стенки. Большое влияние величину усилия оказывает форма пуансона.

На рис. 8.59 показаны рабочие диаграммы и последовательность отбортовки при разной форме очертания рабочей части пуансона (криволинейная - траектория, дуга окружности, цилиндр со значительными закруглениями, цилиндр с маленькими закруглениями) . Усилие, необходимое для отбортовки цилиндрическим пуансоном, может быть определено по следующей формуле:

  • P = lnSσt (Dd) , (8.75)

где D - диаметр отбортовки, мм; d - диаметр отверстия, мм.

Выполнение зависит от чистоты среза деформируемой кромки .

Степень деформации при отбортовке отверстий определяется соотношением между диаметром отверстия в заготовке и диаметром борта или так называемым коэффициентом отбортовки :

где d - диаметр отверстия до отбортовка; D - диаметр отбортовки (по средней линии) .

Допустимая величина поперечного сужения вследствии дефектов края отверстия, значительно ниже, чем при испытании на растяжение. Наименьшая толщина у края борта составляет S1 = S .

Величина коэффициента отбортовка зависит :

  • 1) от характера обработки и состояния кромок отверстий (сверления или пробивки, наличие или отсутствие заусенцев) ;
  • 2) относительной толщины заготовки, что выражается отношением (S/D) 100 ;
  • 3) рода материала и его механических свойств;
  • 4) формы рабочей части пуансона.

Экспериментально доказана обратная зависимость предельно допустимого коэффициента отбортовки от относительной толщины заготовки, то есть чем больше относительная толщина заготовки, тем меньше величина допустимого коэффициента отбортовки, тем больше возможная степень деформации. Кроме того, доказана зависимость предельных коэффициентов от способа получения и состояния кромки отверстия.

Наименьшие коэффициенты получены при отбортовке рассверленных отверстий, наибольшие - при отбортовке пробитых. Коэффициент рассверленных отверстий мало отличается от коэффициента пробитой и отожженной заготовки, так как отжиг устраняет наклеп и повышает пластичность металла. Иногда для устранения наклепанного слоя зачищают отверстие на зачистных штампах.

В табл. 8.42 приведены расчетные значения коэффициентов для малоуглеродистой стали в зависимости от условий отбортовки и отношение d/S .

Пробивку отверстий под отбортовку стоит делать со стороны, противоположной направлению отбортовки, или заключать заготовку решеткой вверх, чтобы грань с решеткой оказалась менее растянутой чем закругленная грань .

Если требуется большая высота борта, не может быть получена в одну операцию, то при отбортовке небольших отверстий в искусственных заготовках следует применить процесс с истончением стенок (см. ниже), а в случае отбортовки больших отверстий или при последовательной вытяжке в ленте - предварительную вытяжку , (рис. 8.60).

Расчет размеров h и d проводится по следующим формулам:

  • h = (Dd)/2 = 0,57r ; (8.77)
  • d = D + 1,14r - 2h , (8.78)

Отбортовка отверстий широко применяется при последовательной штамповке в ленте.

Таблица 8.42. Расчетное значение коэффициентов для малоуглеродистых сталей

Способ отбортовки Способ получения отверстия Значение коэффициента в зависимости от отношения d/S
100 50 35 20 15 10 8 6,5 5 3 1
Сферическим пуансоном 0,70 0,60 0,52 0,45 0,40 0,36 0,33 0,31 0,30 0,25 0,20
Пробивка в штампе 0,75 0,65 0,57 0,52 0,48 0,45 0,44 0,43 0,42 0,42 -
Цилиндрическим пуансоном Сверление с зачисткой заусенцев 0,80 0,70 0,60 0,50 0,45 0,42 0,40 0,37 0,35 0,30 0,25
Пробивка в штампе 0,85 0,75 0,65 0,60 0,55 0,52 0,50 0,50 0,48 0,47 -

Аналогичный характер с операцией отбортовки отверстий, особенно с отбортовкой края полостных деталей, имеет операция закатывания бортов полостных деталей, осуществляемая для увеличения прочности борта и закругления кромки.

Рисунок. 8.60. Отбортовка с предыдущей вытяжкой

В различных конструкциях встречаются отверстия и вырезы не круглой (овальной или прямоугольной) формы с бортами по контуру. Зачастую такие вырезы делают для облегчения массы (лонжероны и т.д..) , А борта - для увеличения прочности конструкции .

В этом случае высота борта берется небольшой (4 ÷ 6%) S при невысоких требованиях к его точности.

При построении развертки следует учитывать различный характер деформации по контуру : изгиб на прямолинейных участках и отбортовка с растяжением и небольшим уменьшением высоты в углах. Однако вследствие целостности металла деформация распространяется на прямолинейные участки борта, металл которых частично компенсирует деформацию угловых бортов. Поэтому большой разницы в высоте борта не получается.

Чтобы устранить возможные погрешности, ширину отбортованного поля на угловых закруглениях следует несколько увеличивать по сравнению с шириной поля на прямолинейных участках.

Примерно:

  • b кр = (1,05 ÷ 1,1) b пр , (8.79)

где b кр и b пр - ширина поля на закруглении и на прямолинейных участках.

При отбортовке НЕ круглых отверстий расчет допустимой деформации проводится для участков с наименьшим радиусом закругления. Экспериментально установлено, что при отбортовке НЕ круглых отверстий предельные коэффициенты несколько меньше , чем при отбортовке круглых отверстий (благодаря разгрузочному влиянию соседних участков) , но величина этого уменьшения практически незначительна. Поэтому в этом случае можно пользоваться коэффициентами, установленными для круглых отверстий.

Большое влияние на величину коэффициента имеет относительная толщина материала S/r или S/d и еще большее влияние - состояние и характер кромки проема.

Предельный коэффициент отбортовки отверстий, полученных пробивкой, вследствие наклепа кромки в 1,5 - 1,7 раза больше чем в фрезерованных. Однако фрезерование является непродуктивным и нецелесообразным процессом.

На рис. 8.62 приведена последовательность изготовления детали путем вытяжки из отбортовки прямоугольной формы. За первую операцию (1) осуществляется прямоугольная вытяжка внутренней полости, за вторую операцию (II) - вырезка технологического отверстия, за третью (III) - вытяжка внешнего контура и отбортовка внутреннего контура.

Вырезание технологических отверстий или применение надрезов для разгрузки, часто применяются при вытягивании деталей сложной формы. Они позволяют значительно уменьшить перемещение внешнего фланца и использовать деформацию донной части заготовки.

d 0 =A-K(r M +S/2)-2ft,

где!)! - наружной диаметр борта; г м - радиус закругления мат­рицы; S - толщина заготовки; h- высота борта.

Обжим(рис. 17.46, б)- уменьшение периметра поперечного сечения полой заготовки. В очаге деформации толщина стенки изделия несколько увеличивается. Во избежание образования продольных складок в обжимаемой части необходимо соблюдать коэффициент обжима

К=~- = 1,2 ...1,4,

где £ заг, d m - диаметр заготовки и детали.

Холодную листовую штамповку осуществляют в основном на кривошипных прессах. По технологическому признаку механи­ческие прессы разделяют на прессы простого, двойного и трой­ного действия (соответственно одно-, двух- и трехползунные). Кинематическая схема кривошипного листоштамповочного прес­са простого действия во многом аналогична схеме кривошипного горячештамповочного пресса.

Пресс двойного действия (рис. 17.47) предназначен для глу­бокой вытяжки крупных деталей. Он имеет два ползуна - внут­ренний 3 с приводом от кривошипа и наружный 2 с приводом от кулачков 1, закрепленных на валу. Вначале наружный ползун обгоняет внутренний и прижимает фланец заготовки к матрице. Во время вытяжки пуансоном, закрепленным на внутреннем ползуне, наружный ползун неподвижен. По окончании вытяжг ки ползуны поднимаются.


Рис. 17.47. Схема однокривошипного пресса двойного действия

Для холодной штамповки крупногабаритных изделий исполь­зуют гидравлические прессы.

В качестве инструмента при холодной листовой штамповке используют штампы. Они состоят из блоков деталей и рабочих частей - матриц и пуансонов. Рабочие части непосредственно деформируют заготовку. Детали блока (верхняя и нижняя плиты, направляющие колонки и втулки) служат для опоры, направле­ния и крепления рабочих частей штампа. По технологическому признаку различают штампы простого, последовательного и со­вмещенного действия.

В штампе простого действия(рис. 17.48) за один ход ползу­на выполняется одна операция, поэтому его называют одноопера- ционным. Нижней плитой штамп устанавливают на стол пресса и крепят к нему болтами и скобами, верхнюю плиту небольших штампов крепят к ползуну с помощью хвостовика, а верхнюю плиту крупных штампов крепят к ползуну так же, как и ниж­нюю плиту, к столу пресса. Полосу или ленту подают в штамп между направляющими линейками до упора, который ограни­чивает шаг подачи полосы или ленты. Для снятия высечки с пу­ансона служит съемник.


В штампе последовательного действияза один ход ползуна выполняют одновременно две или больше операций в различных позициях, а заготовка после каждого хода пресса перемещается на шаг подачи. На рис. 17.49 представлена схема штампа по­следовательного действия для пробивки и вырубки. За каждый ход пресса происходит подача заготовки до упора 1, затем пуан­сон 3 пробивает отверстие в заготовке, а пуансон 2 при следую­щем ходе пресса производит вырубку детали.

В штампе совмещенного действия(рис. 17.50) за один ход пол­зуна пресса две и более операции выполняются в одной позиции без перемещения заготовки в направлении подачи. При движении

ползуна вниз пуансон 5 и матрица 8 производят вырубку заготов­ки из полосы 6, а пуансон 7 - одновременно вытяжку изделия в матрице 5. Последовательность операций вытяжки обозначе­ны на рисунке позициями 10...12.

Штампы последовательного n совмещенного действия назы­вают многооперационными. Они производительнее одноопера- ционных, но сложнее и дороже в изготовлении. Их используют в крупносерийном и массовом производстве.

ЛЕКЦИЯ № 16

Формоизменяющие операции листовой штамповки. Формовка и отбортовка

План лекции

1. Формовка.

1.1. Определение допустимых степеней деформации при формовке.

1.2. Технологические расчеты при формовке.

2. Отбортовка.

2.1. Отбортовка отверстий.

2.2. Геометрические параметры инструмента для отбортовки.

1. Формовка

Рельефная формовка представляет собой изменение формы заготовки, заключающейся в образовании местных углублений и выпуклостей за счет растяжения материала.

Кроме местных углублений и выпукло – вогнутых рельефов формовкой получают рисунки и ребра жесткости. Рационально выполненные ребра жесткости позволяют существенно повысить жесткость плоских и неглубоких штампованных деталей, появляется возможность уменьшения толщины заготовки и ее массы. Применение формовки замен вытяжки при изготовлении неглубоких деталей с фланцем позволяет получить экономию металла вследствие уменьшения поперечных размеров заготовки. Повышение прочности, полученной в результате деформационного упрочнения, превосходит уменьшение прочности вследствие утонения заготовки в зоне деформации.

Форма пуансона существенно влияет на место расположение очага деформации. При деформировании полусферическим пуансоном зона пластической деформации состоит из двух участков: контактирующего с пуансоном и свободного участка, на котором отсутствуют внешние нагрузки.

Рисунок 1 – Формовка ребра жесткости и полусферических углублений

При формовке полусферических углублений возможно появление трещин на некотором удалении от полюса полусферы. Это объясняется тем, что в полюсе и его окрестности заготовка плотно прилегает к пуансону и контактные силы трения, возникающие при скольжении заготовки (при ее утонении) относительно пуансона, сдерживают деформацию в полюсе более интенсивно, чем на периферийных участках.

Формовкой цилиндрическим пуансоном с плоским торцом можно получить углубления высотой (0.2 – 0.3) диаметра пуансона. Для получения более глубоких полостей применяют формовку с предварительным набором металла в виде кольцевого выступа (рифта), а при штамповке деталей их алюминиевых сплавов – дифференцированный нагрев фланца.

Рисунок 2 – Формовка цилиндрическим пуансоном с плоским торцом и формовка с предварительным набором

Заготовка при формовке частично обтягивается по пуансону, а частично по матрице, поэтому глубина матрицы должна быть больше высоты ребра или углубления, а радиус углового участка пуансона существенно меньше радиуса скругления кромки матрицы иначе возможно появление пережимов стенок формуемой детали, приводящих к трещинам и неисправимому браку.

Формовку можно осуществлять эластичной и жидкостной средой (штамповка резиной, полиуританом, применяемым в мелкосерийном производстве: самолетостроении, вагоностроении, приборостроении, радиотехнике) жидкостная формовка – гофрированных тонкостенных осесеметричных оболочек (компрессоров в системах трубопроводов и в качестве чувствительных элементов приборов).

1.1. Определение допустимых степеней деформации при формовке

Периферийный кольцевой участок фланца ограниченный радиусами и деформируется упруго.

Наибольшая глубина ребра жесткости, которую можно получить в результате рельефной формовки деталей из алюминия, мягкой стали, латуни, может ориентировочно быть определена по эмпирической формуле:

где - ширина ребра, мм;

Толщина штампуемого материала, мм.

Рисунок 3 – Пластическая и упругая области при формовке

При глубина; , а для предотвращения разрушения материала.

При больших размерах заготовки граница между пластической и упругой областью составляет.

При других отношениях граница между упругой и пластической областями составляет, где находится по

Глубина местной вытяжки определяется уравнением:

Увеличение зазора при малых радиусах закругления позволяет получить более глубокую местную вытяжку.

Для рельефной формовки в виде углублений сферической формы:

Рисунок 4 – Схема формовка углублений сферической формы

Возможные размеры местных углублений можно определить исходя из относительного удлинения штампуемого материала по зависимости:

где - длина средней линии сечения рельефа после штамповки;

Длина соответствующего участка заготовки до штамповки.

При формовке цилиндрическим пуансоном с плоским торцом и малым радиусом скругления рабочей кромки, пластически деформируется кольцевой участок фланца, ограниченный радиусом и, а также плоский участок дна детали.

Рисунок 5 – Схема формовки ребер жесткости, углублений сферической формы

1.2. Технологические расчеты при формовке

Силу рельефной штамповки можно определить по формуле:

где - удельная сила рельефной формовки, принимаемое:

для алюминия 100 – 200 МПа,

для латуни 200 – 250 МПа,

для мягкой стали 300 – 400 МПа,

Площадь проекции штампуемого рельефа на плоскость, перпендикулярную направлению действия силы, мм2.

Сила для рельефной штамповки на кривошипных прессах небольших деталей (), из тонкого материала (до 1.5 мм) может быть определена по эмпирической формуле:

где - площадь штампуемого рельефа, мм2

Коэффициент: для стали 200 – 300 МПа,

для латуни 150 – 200 МПа.

Сила при формовке полусферическим пуансоном без учета контактного трения и неравномерности толщины заготовки в очаге деформации можно определить по формуле:

При формовке ребра жесткости (рифте) пуансоном с поперечным сечением в виде кругового сегмента.

где - длина ребра, при

где - коэффициент, зависит от ширины и глубины рифте

2. Отбортовка

2.1. Отбортовка отверстий

Процесс отбортовки отверстий заключается в образовании в плоском или полом изделии с предварительно пробитым отверстием (иногда и без него) отверстия большего размера с цилиндрическими бортами или бортами другой формы.

Отбортовкой получают отверстия с диаметром 3…1000мм и толщиной = 0,3…30мм. Данный процесс широко используется в штамповочном производстве, заменяя операции вытяжки с последующей вырубкой дна. Особенно большую эффективность дает применение отбортовки отверстия при изготовлении деталей с большим фланцем, когда вытяжка затруднительна и требует нескольких переходов.

При рассматриваемом процессе происходит удлинение в тангенциальном направлении, и уменьшение толщины материала.

Для относительно высокого борта расчет диаметра исходной заготовки выполняют из условия равенства объемов материала до и после деформирования. Исходными параметрами являются диаметр отбортованного отверстия и высота борта детали (рис. 6). По этим параметрам рассчитывается требуемый диаметр исходного отверстия:

Если высота борта задана чертежом детали (рис. 6), то диаметр отверстия под отбортовку для низкого борта приближенно подсчитывают, как в случае простой гибки по формуле:

Радиус закругления рабочего ребра матрицы,

где - высота борта, мм, - радиус отбортовки, - толщина исходного материала.

В случае заданного диаметра под отбортовку высоту борта можно определить по зависимости:

Рисунок 6 – Схема для расчета параметров отбортовки - высоты борта и - диаметра отверстия под отбортовку

На высоту отбортовки большое влияние оказывает радиус. При больших его значениях высота борта значительно увеличивается.

При получении небольших отверстий под резьбу или запрессовку осей, когда конструктивно необходимо иметь цилиндрические стенки, применяется отбортовка с малым радиусом закруглений и малым зазором (рис7, а).

При применении рассматриваемой операции для увеличения жесткости конструкции: при отбортовке крупных отверстий, окон авиационных, транспортных, судостроительных конструкций, отбортовке люков, горловин, раструбов и т.д., процесс лучше производить при большой величине зазора между пуансоном и матрицей и при большом радиусе закругления матрицы (рис.7, б). В этом случае получается малая цилиндрическая часть борта.

Рисунок 7 – Варианты отбортовки: а- с малым радиусом закругления матрицы и малым зазором, б – с большим зазором

Число переходов, необходимых для получения отбортовки, определяют по коэффициенту отбортовки:

где - диаметр отверстия до отбортовки;

Диаметр отбортовки по средне линии.

Предельно допустимый коэффициент для заданного материала можно определить аналитически:

где - относительное удлинение материала;

Коэффициент, определяемый условиями отбортовки.

Наименьшая толщина у края борта составляет:

Величина коэффициента отбортовки зависит:

  1. От характера отбортовки и состояния кромок отверстия (сверлением или пробивкой получено отверстие, наличие или отсутствие заусенцев).
  2. От относительной толщины заготовки.
  3. От рода материала, его механических свойств и формы рабочей части пуансона.

Наименьшее значение коэффициента следует принимать при отбортовке рассверленных отверстий, наибольшие – пробитых. Это вызвано наклепом после пробивки. Для снятия его вводят отжиг или зачистку отверстия в зачистных штампах, что позволяет повысить пластичность материала.

Пробивку отверстий под отбортовку следует производить со стороны, противоположной направлению отбортовку, или укладывать заготовку заусенцами вверх, чтобы грань с заусенцами оказалась менее растянутой, чем закругленная грань.

При отбортовке дна предварительно вытянутого стакана с отверстием (рис. 8)общую высоту детали, полученную после деформирования можно определить по формуле:

где - глубина предварительной вытяжки.

Рисунок 8- Схема для расчета отбортовки в дне предварительно вытянутого стакана: 1-матрица, 2-пуансон, 3-прижим

В связи со значительным растяжением материала на кромке технологического отверстия в результате увеличения до происходит существенное утонение края кромки:

где - толщина кромки после утонения.

За одну операцию одновременно с отбортовкой можно произвести утонение стенки до.

При проколке отверстия максимальный диаметр для каждого вида и толщины материала, как правило, устанавливается опытным путем. Кромка торца вертикальных стенок при этом всегда остаются рваной, поэтому проколка применима только для неответственных деталей.

Технологическая сила, требуемая для отбортовки круглых отверстий, определяется по формуле:

где - придел прочности штампуемого материала, МПа.

Сила прижима при отбортовке может быть принята равной 60 % от силы прижима при вытяжке при аналогичных условиях (толщина, вид материала, диаметр кольцевой площадки под прижимом).

2. Геометрические параметры инструмента для отбортовки

Размеры рабочих деталей штампов для отбортовки круглых отверстий можно определять в зависимости от диаметра отбортовки с учетом некоторого пружинения штампуемого материала и припуска на изнашивание пуансона:

где - номинальное значение диаметра отбортованного отверстия;

Заданный допуск на диаметр отбортованного отверстия.

Матрицу изготавливают по пуансону с зазором.

Зазор зависит от толщины исходного материала и вида заготовке и может быть определен по следующим соотношениям:

  • в плоской заготовке -
  • в дне предварительно вытянутого стакана -

или из таблицы 1.

Рабочая часть пуансонов для отбортовки может иметь различную геометрию (рис. 9):

а) трактрисы, обеспечивающей минимальное усилие отбортовки;

б) конусную;

в) сферическую;

г) с большим радиусом закругления;

д) с малым радиусом закругления.

а) б) в) г) д)

Рисунок 9 – Формы рабочей части пуансонов

Пуансоны со сферической геометрией рабочей части и с малым радиусом закругления требуют наибольшего усилия отбортовки.

Таблица 1-Односторонний зазор при отбортовке

Формоизменяющие операции листовой штамповки. Формовка и отбортовка

Отбортовка подразделяется на два основных вида: отбортовку отверстий и отбортовку наружного контура. Они различаются характером деформации, схемой напряжённого состояния и производственным назначением.

Отбортовка отверстий представляет собой образование бортов вокруг предварительно пробитых отверстий (иногда без них) или по краю полых деталей, производимое за счёт растяжения металла.

Рисунок 7 - Последовательность процесса отбортовки

Отбортовка отверстий широко используется в штамповочном производстве, заменяя операции вытяжки, с последующей вырубкой дна. Особенно большую эффективность даёт применение отбортовки отверстий при изготовлении деталей с большим фланцем, когда вытяжка затруднительна и требует нескольких переходов.


Заключение

Разработанные схемы и методы расчётов технологических процессов позволяют точно оценить и рассчитать характерные их показатели. Методика расчётов помогает более углубленно изучить возможные варианты качественной работы металлообрабатывающей промышленности, а именно процесса листовой штамповки. Учащимся пособие позволяет проще сориентироваться в предложенной методике расчётов, развивая логическое мышление; даёт возможность придумать новые схемы технологических процессов для внедрения в производство и успешной их работы.

Пособие может использоваться для расчётов технологических процессов любых операций процесса ХЛШ. Благодаря предложенным расчётам формообразование металлических заготовок почти всегда можно провести неоднозначно. Возможных вариантов расчёта какого-либо технологического процесса существует множество.

Чтобы получить оптимальный вариант по тому или иному примеру, необходим расчёт по нескольким возможным путям. Для более эффективного и удобного пользования материала расчётов требуется наличие определённой компьютерной программы.


ПРИЛОЖЕНИЕ I

Пример расчёта технологического процесса листовой штамповки

Пример:

Получить деталь из стали 35 в виде полусферы с размерами S=0,8 мм, Н=d/2=25 мм, d=50 мм.

1.1 Анализ методов получения изделия

Полусфера представляет собой объёмное изделие, поэтому получить его прокаткой (холодной или горячей) не возможно, т.к. данный процесс позволяет получить только плоские изделия (лист, плита, профиль), исключение составляет лишь трубы получаемые прокаткой, поэтому данный процесс формообразования исключим сразу без дальнейшего анализа. Прессованием также получить полусферу нельзя, т.к. оно предполагает изготовление также как и в прокатке плоских изделий за исключением труб (уголки, швеллеры, тавры, двутавры, другие сложные профили), следовательно, аналогично прокатке проводить более подробного анализа изготовления данного изделия не будем.

Горячая штамповка, являющаяся объёмным процессом, должна бы позволить получить данное изделие, но на самом деле это не так, т.к. её проводят в т.н. специальных технологических полостях, которые повторяют контур детали. Хотя, таким процессом деформирования можно получить черновую заготовку и после ряда дополнительных операций изготовить полусферу, но в силу длительности, повышенной трудоёмкости и экономической не целесообразности данный процесс изготовления полусферы исключим (ковка не будет даже рассматриваться, т.к. отковать такую деталь невозможно в силу трудоёмкости изготовления её геометрии для данной операции). Холодная штамповка аналогична процессу горячей штамповки в плане получения различных объемных изделий (но она позволяет получать и плоские изделия, т.к. уголок, круг и т. д.). Листовая штамповка делится на несколько операций: вырубка, пробивка, протяжка, раздача, обжим, вытяжка, формовка, резка, гибка. Резка, вырубка и пробивка позволяют получить только плоские изделия, поэтому сразу исключаем эти операции штамповки. Гибка также позволяет получить только плоские детали, но другой ориентации, следовательно, эту операцию тоже исключаем. Обжим и раздача позволяют получить детали, которые после протекания данных операций будут иметь другой диаметр в сечении по отношению к первоначальному. В данном случае заготовкой является круг специально рассчитанного диаметра, раздать такую заготовку явно нельзя, обжать тоже, т.к. в последнем случае обязательно будут иметь место гофрообразования, неудаляемые никаким дополнительным способом обработки, следовательно, эти операции также не пригодны в данном случае. Вытяжку, протяжку и формовку можно отнести в одну общую группу операций. Протяжка и формовка являются частными случаями вытяжки. Протяжка это та же операция вытяжки, но имеющая место утонение стенки в процессе деформации, которая у нас отсутствует в силу ненадобности прижима заготовки к матрице, который и вызывает

утонение стенки в результате действия на заготовку пуансона. Формовка это тоже частный случай вытяжки, но такая операция позволяет получить подобную деталь с меньшим радиусом выдавливания (в нашем случае мы имеем глубокий радиус выдавливания). Т.о., проведя полный анализ методов получения полусферы, выбираем процесс холодной листовой штамповки операцию вытяжки. Вытяжка - это процесс формообразования, приводящая к характерной объёмной схеме напряжённо – деформированного состояния.



Технологический процесс изготовления полусферы выглядит следующим образом: на участок штамповки в качестве заготовительного материала поставляют холоднокатаный лист толщиной 0,5мм. Далее ведут разделительные операции, т.е. из листа вырубают заготовки в виде круга рассчитанного диаметра. После чего заготовку кладут в вытяжной штамп и дают заранее высчитанное усилие для данной деформации. Получившееся изделие(полусфера) проверяется на наличие внешних дефектов, если они видны, то деталь либо бракуют, либо устраняют их(в зависимости от степени дефекта). Если нужны дополнительные механические действия, то деталь отправляют на механообработку(сверление, пробивка, шлифование и т.д.). Далее деталь подвергают более тщательному контролю качества и проводят исследования на пригодность работы в реальных условиях(контролю подвергают не все детали, а три штуки, взятые из одной партии). По окончании всех приведённых операций детали маркируют, упаковывают и отправляют на склад, откуда продукция поставляется заказчику.

1.2 Расчёт раскроя полосы на заготовки

Для расчётов технологического процесса для начала требуется рассчитать раскрой материала. Будем считать, что процесс штамповки данной детали автоматизирован, поэтому воспользуемся однорядным раскроем. Материалом для заготовки будет служить полоса, размер(ширину) которой следует вычислить. Для начала найдём диаметр заготовки, которая будет вырубаться из полосы. Из табл.19 диаметр заготовки для полушария находится по формуле

Длина полосы ГОСТирована и составляет 1000, 2000, 3000 мм и т.д. Примем полосу шириной 1000мм. Определим ширину полосы, для этого выясним величину перемычки между вырубаемыми заготовками

∆=(2-3)S=2*0,8мм=1,6 мм

Шаг подачи

Ш=D з +∆=70,7+1,6=72,3 мм

Ширина полосы

В=D з +2∆=70,7+2*1,6=73,9 мм

По ГОСТу нет приблизительной ширины полосы, а только точная, поэтому принимаем полосу шириной 74мм.

Количество размещаемых заготовок на полосе длиной 1000мм и шириной 74 мм

В полосе умещается целых 13 заготовок.

Площадь одной заготовки

Площадь полосы

F п =В*L=74*1000=74000 мм 2

Найдём коэффициент использования материала по формуле

Таким образом в отход идёт 31,1% металла.

1.3 Выбор технологического процесса и его расчёт

Зная диаметр заготовки, рассчитаем усилие процесса вытяжки. Т.к. ранее было принято, что вытяжка идёт в один переход, то не будем уточнять это предположение по дополнительным формулам.

Р=πD з Sσ в k 1

Это формула определения усилия процесса вытяжки, где π=3,14(постоянная), S=0,8 мм, D з =70,7 мм, k 1 = 0,5-1,0, принимаем k 1 =0,75, σ в - предел прочности для стали 35, по таблицам механических свойств для данной стали σ в =540-630 МПа, примем σ в =600 МПа.

Т.к толщина данного изделия составляет 0,8 мм, то прижим можно не использовать.

Тогда полное усилие процесса равно усилию вытяжки.

Определим работу процесса

где Р мах =79,92 МПа, С=0,6-0,8, принимаем С=0,7, h=25 мм(глубина вытяжки)

Получившиеся данные соответствуют технологическому процессу для данной детали. На основании получившихся величин выбирают оборудование для осуществления данного процесса, причём значения параметров пресса должны быть выше расчётных значений для осуществления нормальной его работы.


ПРИЛОЖЕНИЕ II

Элементарные площади простейших фигур:

Площадь круга

Площадь квадрата

Площадь кольца

Площадь треугольника

Формула для определения длины дуги круга:

 

Возможно, будет полезно почитать: