Устройство плавного пуска электродвигателя. Пример применения. Зачем нужен плавный пуск насоса? Электронной схемы плавного пуска насоса

Серии ES024 компания «Эффективные Системы» производит станции управления , способные объединять в единую систему до 7 насосов номинальной мощностью от 1,5 до 315 кВт, номинальным напряжением 380 В. По техническому заданию заказчика возможно изготовление станций управления иных номинальных мощностей и напряжений.

В зависимости от потребности заказчика в станциях управления насосами производства компании «Эффективные Системы» могут быть реализованы следующие функции:

  1. Настройка до 8 различных заданных уровней давления, которые необходимо поддерживать, распределенных по времени суток;
  2. Возможность перехода системы в «спящий режим» при отсутствии водоразбора или при малом водоразборе, что позволяет существенно снизить энергопотребление;
  3. Периодическая смена насосов, позволяющая обеспечить их равномерный износ и избежать ржавления резервных насосов;
  4. Управление дренажными насосами, позволяющее контролировать уровень сточных вод;
  5. Определение уровня жидкости и управление наполнением резервуара, позволяющие запускать насос в зависимости от количества жидкости в резервуаре и восполнять ее расход с заданным уровнем подачи;
  6. Сигнализация о повышенном и пониженном давлении в трубопроводе;
  7. Занесение в память токовых параметров до 7 двигателей насосов для обеспечения токовой защиты и защиты от перегрузки любого насоса, работающего в каждый конкретный момент времени;
  8. Диагностика неисправностей, позволяющая автоматически выявлять и исключать из алгоритма работы системы неисправные насосы.

Для получения технико-коммерческого предложения свяжитесь с нами одним из указанных вверху и внизу данной страницы способом.

КРАТКАЯ СПРАВКА: ПЛАВНЫЙ ПУСК НАСОСОВ

На практике пусковой ток электродвигателей насосов в 3-5 и более раз превосходит номинальный ток. Это в конечном счете приводит к увеличенному тепловому износу изоляции обмоток статора (из-за этого в значительной степени снижается долговечность работы и надежность электродвигателя насоса). Помимо этого, если мощность питающей сети недостаточна, возможно краткосрочное падение напряжения, а это уже может негативно влиять на работу другого электрооборудования, запитанного от той же сети.

Прямой пуск насоса вреден и для агрегата и для скважины в целом, так как сопровождается гидроударами, которые разрушают запорную арматуру, трубопровод и сам насос. При прямом запуске скважинного насоса может наблюдаться сильный приток воды из водного пласта и это приводит к разрушению фильтровальной зоны, а, следовательно, к попаданию песка в скважину.

Единственным эффективным решением данных проблем является реализация плавного пуска насоса , для чего разработан целый ряд технических средств, в том числе устройства плавного пуска и преобразователи частоты.

Задача устройств плавного пуска — обеспечить защиту насосных агрегатов от высокого пускового тока, механических перегрузок, гидроударов, т.е. обеспечить долговечность и надежную эксплуатацию оборудования. Наряду с решением задачи плавного пуска применение преобразователей частоты при работе насосов позволяет согласовать производительность насоса с расходом перекачиваемой жидкости в каждый момент времени, что позволяет значительно снизить энергопотребление системы.

Кому хочется напрягаться, тратить свои деньги и время на переоборудование устройств и механизмов, которые и так прекрасно работают? Как показывает практика – многим. Хоть и не каждый в жизни сталкивается с промышленным оборудованием, оснащённым мощными электродвигателями, но, постоянно встречается пусть с не столь прожорливыми и мощными, электромоторами в быту. Ну а лифтом, наверняка, пользовался каждый.

Электродвигатели и нагрузки - проблема?

Дело в том, что фактически любые электродвигатели, в момент пуска или остановки ротора, испытывают огромные нагрузки. Чем мощнее двигатель и оборудование, приводимое им в движение, тем грандиозней затраты на его запуск.

Наверное, самая значительная нагрузка, приходящаяся на двигатель в момент пуска, это многократное, хоть и кратковременное, превышение номинального рабочего тока агрегата. Уже через несколько секунд работы, когда электромотор выйдет на свои штатные обороты, ток, потребляемый им, тоже вернётся к нормальному уровню. Для обеспечения необходимого электроснабжения приходиться наращивать мощность электрооборудования и токопроводящих магистралей , что приводит к их подорожанию.

При запуске мощного электродвигателя, из-за его большого потребления, происходит «просадка» напряжения питания, которая может привести к сбоям или выходу из строя оборудования, запитанного с ним от одной линии. Ко всему прочему, снижается срок службы аппаратуры электроснабжения.

При возникновении нештатных ситуаций, повлёкших перегорание двигателя или его сильный перегрев, свойства трансформаторной стали могут измениться настолько, что после ремонта двигатель потеряет до тридцати процентов мощности. При таких обстоятельствах, к дальнейшей эксплуатации он уже непригоден и требует замены, что тоже недешево.

Для чего нужен плавный пуск?

Казалось бы, все правильно, да и оборудование на это рассчитано. Вот только всегда есть «но». В нашем случае их несколько:

  • в момент запуска электродвигателя, ток питания может превышать номинальный в четыре с половиной-пять раз, что приводит к значительному нагреву обмоток, а это не очень хорошо;
  • старт двигателя прямым включением приводит к рывкам, которые в первую очередь влияют на плотность тех же обмоток, увеличивая трение проводников во время работы, ускоряет разрушение их изоляции и, со временем, может привести к межвитковому замыканию;
  • вышеупомянутые рывки и вибрация передаются на весь приводимый в движение агрегат. Это уже совсем нездорово, потому что может привести к повреждению его движущихся элементов : систем зубчатых передач, приводных ремней, конвейерных лент или просто представьте себя едущим в дёргающемся лифте. В случае насосов и вентиляторов - это риск деформации и разрушения турбин и лопастей;
  • не стоит также забывать об изделиях, возможно находящихся на производственной линии. Они могут упасть, рассыпаться или разбиться из-за такого рывка;
  • ну, и наверно, последний из моментов, заслуживающих внимание - стоимость эксплуатации такого оборудования. Речь идёт не только о дорогостоящих ремонтах, связанных с частыми критическими нагрузками, но и об ощутимом количестве не эффективно израсходованной электроэнергии.

Казалось бы, все вышеперечисленные сложности эксплуатации присущи лишь мощному и громоздкому промышленному оборудованию, однако, это не так. Все это может стать головной болью любого среднестатистического обывателя. В первую очередь это касается электроинструмента.

Специфика применения таких агрегатов, как электролобзики, дрели, болгарки и им подобных, предполагают многократные циклы запуска и остановки, в течение относительно небольшого промежутка времени. Такой режим эксплуатации, в той же мере, влияет на их долговечность и энергопотребление, как и у их промышленных собратьев. При всем этом не стоит забывать, что системы плавного запуска не могут регулировать рабочие обороты мотора или реверсировать их направление. Также невозможно увеличить пусковой момент или снизить ток ниже, чем требуется для начала вращения ротора электродвигателя.

Видео: Плавный пуск, регулировка и защита колектор. двигателя

Варианты систем плавного пуска электродвигателей

Система «звезда-треугольник»

Одна из наиболее широко применяемых систем запуска промышленных асинхронных двигателей. Основным её преимуществом является простота. Двигатель запускается при коммутации обмоток системы «звезда», после чего, при наборе штатных оборотов, автоматически переключается на коммутацию «треугольник». Такой вариант старта позволяет добиться тока почти на треть ниже , чем при прямом запуске электромотора.

Однако, этот способ не подойдёт для механизмов с небольшой инерцией вращения. К таким, к примеру, относятся вентиляторы и небольшие насосы, из-за малых размеров и массы их турбин. В момент перехода с конфигурации «звезда» на «треугольник», они резко снизят обороты или вовсе остановятся. В результате после переключения, электродвигатель по сути, запускается заново. То есть в конечном счёте вы не добьётесь не только экономии ресурса двигателя, но и, вероятнее всего, получите перерасход электроэнергии.

Видео: Подключение трёхфазного асинхронного электродвигателя звездой или треугольником

Электронная система плавного пуска электродвигателя

Плавный пуск двигателя может быть произведён с помощью симисторов, включённых в цепи управления. Существует три схемы такого включения: однофазные, двухфазные и трехфазные. Каждая из них отличается своими функциональными возможностями и конечной стоимостью соответственно.

С помощью таких схем, обычно, удаётся снизить пусковой ток до двух–трёх номинальных. Кроме этого, удаётся снизить существенный нагрев, присущий вышеупомянутой системе «звезда-треугольник», что способствует увеличению срока службы электродвигателей. Благодаря тому, что управление запуска двигателя происходит за счёт снижения напряжения, разгон ротора осуществляется плавно, а не скачкообразно, как у других схем.

В целом, на системы плавного пуска двигателя возлагаются несколько ключевых задач:

  • основная – понижение пускового тока до трёх–четырёх номинальных;
  • снижение напряжения питания двигателя, при наличии соответствующих мощностей и проводки;
  • улучшение параметров пуска и торможения;
  • аварийная защита сети от перегрузок по току.

Однофазная схема пуска

Данная схема предназначена для запуска электродвигателей мощностью не более одиннадцати киловатт. Применяют такой вариант в том случае, если требуется смягчить удар при запуске, а торможение, плавный пуск и понижение пускового тока не имеют значения. В первую очередь из-за невозможности организации последних, в такой схеме. Но по причине удешевления производства полупроводников, в том числе и симисторов, они сняты с производства и редко встречаются;

Двухфазная схема пуска

Такая схема предназначена для регулирования и пуска двигателей мощностью до двухсот пятидесяти ватт. Такие системы плавного пуска иногда комплектуют обходным контактором для удешевления прибора, однако, это не решает проблемы несимметричности питания фаз, что может привести к перегреву;

Трехфазная схема пуска

Эта схема является наиболее надёжной и универсальной системой плавного пуска электродвигателей. Максимальная мощность, управляемых таким устройством двигателей, ограничена исключительно максимальной температурной и электрической выносливостью применённых симисторов. Его универсальность позволяет реализовать массу функций , таких как: динамический тормоз, подхват обратного хода или балансировку ограничения магнитного поля и тока.

Важным элементом последней, из упомянутых схем, является обходной контактор, о котором говорилось раньше. Он позволяет обеспечить правильный тепловой режим системы плавного пуска электродвигателя , после выхода двигателя на штатные рабочие обороты, предотвращая его перегрев.

Существующие на сегодняшний день устройства плавного пуска электродвигателей, помимо приведённых выше свойств, рассчитаны на их совместную работу с различными контроллерами и системами автоматизации. Имеют возможность включения по команде оператора или глобальной системы управления. При таких обстоятельствах, в момент включения нагрузок, возможно появление помех, могущих привести к сбоям в работе автоматики, а следовательно, стоит озаботиться системами защиты. Использование схем плавного пуска, способно значительно уменьшить их влияние.

Плавный пуск своими руками

Большинство перечисленных выше систем фактически неприменимы в бытовых условиях. В первую очередь по той причине, что дома мы крайне редко используем трехфазные асинхронные двигатели. Зато коллекторных однофазных моторов - хоть отбавляй.

Существует немало схем устройства плавного запуска двигателей. Выбор конкретной зависит исключительно от вас, но в принципе, имея определённые знания радиотехники, умелые руки и желание, вполне можно собрать приличный самодельный пускатель , который продлит жизнь вашего электроинструмента и бытовой техники на долгие годы.

Устройство плавного пуска ABB PSR-25-600

Всем привет! Сегодня будет статья, в которой показан реальный пример использования устройства плавного пуска (мягкого пускателя) на практике. Плавный пуск электродвигателя установлен мною на реальном устройстве, приводятся фото и схемы.

Что это за устройство, я ранее подробно рассказывал . Напоминаю, что мягкий пускатель и устройство плавного пуска суть одно и то же устройство. Названия эти берутся от английского Soft Starter. В статье я буду называть этот блок и так, и эдак, привыкайте). Информации по устройствам плавного пуска в интернете достаточно, рекомендую также почитать .

Моё мнение по пуску асинхронных двигателей, подтвержденное многолетними наблюдениями и практикой. При мощности двигателя более 4 кВт стоит подумать, чтобы обеспечить плавный разгон двигателя. Это нужно при тяжелой, инерционной нагрузке, которая как раз и подключается на вал такого двигателя. Если двигатель используется с редуктором, то ситуация полегче.

Простейший и самый дешевый вариант плавного пуска – вариант с включением двигателя через схему “Звезда-Треугольник”. Более “плавные” и гибкие варианты – устройство плавного пуска и преобразователь частоты (в народе – “частотник”). Есть ещё древний способ, который уже почти не применяется – .

Кстати, верный признак того, что двигатель питается через частотник – хорошо слышимый писк с частотой около 8 кГц, особенно на низких оборотах.

Я уже использовал устройство плавного пуска от Schneider Electric, был такой положительный опыт в моей деятельности. Тогда нужно было плавно включать/выключать длинный круговой конвейер с заготовками (двигатель 2,2 кВт с редуктором). Жаль, что фотоаппарата тогда не было под рукой. Но в этот раз всё рассмотрим очень детально!

Зачем понадобился плавный пуск двигателя

Итак, проблема - на котельной есть насосы подпитки котла водой. Всего два насоса, и включаются они по команде от системы слежения за уровнем воды в котле. Одновременно может работать только один насос, выбор насоса осуществляет оператор котельной путем переключения водяных кранов и электрических переключателей.

Насосы приводятся в действие обычными асинхронными двигателями. Асинхронные двигатели 7,5 кВт через обычные контакторы (). А поскольку мощность большая, то пуск очень жесткий. Каждый раз при пуске возникает ощутимый гидроудар. Портятся и сами двигатели, и насосы, и гидросистема. Иногда такое ощущение, что трубы и краны сейчас разлетятся вдребезги.


Подписывайтесь! Будет интересно.


Кроме того, когда котёл остывший, и в него резко подается горячая вода (более 95 °С), то происходят неприятные явления, напоминающие взрывообразное бурление. Бывает и наоборот, воду с температурой 100 °С можно холодной – когда в котле находится сухой пар с температурой почти 200 °С. В этом случае тоже происходят вредные гидроудары.

Всего на котельной два идентичных котла, но во втором установлены частотники на насосы. Котлы (точнее, парогенераторы) вырабатывают пар с температурой более 115 °С и давлением до 14 кгс/см2.

Жаль, что конструкцией котла в электросхеме не предусмотрено было плавное включение двигателей насоса. Хотя котлы итальянские, на этом было решено сэкономить…

Повторюсь, что для плавного включения асинхронных двигателей мы имеем на выбор такие варианты:

  • система плавного пуска (мягкий пуск)
  • частотный преобразователь (инвертор)

В данном случае необходимо было выбрать тот вариант, при котором бы было минимальное вмешательство в рабочую схему управления котлом.

Дело в том, что любые изменения в работе котла должны быть обязательно согласованы с производителем котла (либо сертифицированной организацией) и с надзорной организацией. Поэтому изменения должны быть внесены незаметно и без лишнего шума. Хотя, в систему безопасности я не вмешиваюсь, поэтому тут не так строго.

Мои постоянные читатели знают, что теперь, после , я имею полное право выполнять работы по КИПиА в котельной.

Выбор устройства плавного пуска

Для начала посмотрим на шильдик двигателя:

Мощность двигателя – 7,5 кВт, обмотки соединены в схему “треугольник”, номинальный потребляемый при этом ток – 14,7А.

Вот как выглядела система пуска (“жёсткая”):

Напоминаю, что у нас два двигателя, и запускаются они контакторами 07КМ1 и 07КМ2. Контакторы снабжены блоками дополнительных контактов – для индикации и контроля включения.

В качестве альтернативы было выбрано устройство плавного пуска ABB PSR-25-600. Его максимальный ток – 25 Ампер, так что запас у нас хороший. Особенно, если учесть, что работать придётся в тяжелых условиях – количество пусков/стопов, высокая температура. Фото – в начале статьи.

Вот наклейка на софтстартере с параметрами:

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Soft Starter ABB PSR-25-600 – параметры

  • FLA – Full Load Amps – значение силы тока при полной нагрузке – почти 25А,
  • Uc – рабочее напряжение,
  • Us – напряжение цепи управления.

Установка УПП

Примерил для начала:

По высоте подходит один в один, по ширине тоже, только длина чуть больше, но место есть.

Теперь вопрос по цепям управления. Контакторы в исходной схеме включались напряжением 24 VAC, а наши АББ управляются напряжением минимум 100 VAC. Налицо необходимость промежуточного реле либо изменения напряжения питания цепи управления.

Однако, на официальном сайте ABB я нашёл схему, где показано, что это устройство способно работать и при 24 VAC. Попытал счастья – не получилось, не запускается…

Что же, ставим промежуточное реле, которое приводит напряжение к нужному уровню:

Вот с другого ракурса:

Вот и всё. Промежуточные реле обозвал 07КМ11 и 07КМ21. Кстати, они также нужны и для дополнительных цепей. Через них включаются индикаторы, и сухие контакты для внешнего устройства (пока не используются, в старой схеме – оранжевые провода).

Когда хотел управление использовать напрямую, без реле (24 VAC), планировал индикаторы включения пустить через контакты Com – Run, которые теперь остались неиспользованные.

Схемы плавного пуска

Вот исходная схема.

А вот как нехитро я изменил схему:

По настройкам – коротко. Тут три регулировки – время разгона, время замедления, и начальное напряжение.

Можно было бы использовать одно устройство плавного пуска, и контакторы выбора двигателя (переключать одно устройство на два двигателя). Но это усложнит и сильно изменит схему, и понизит надежность. Что для такого стратегического объекта, как котельная, очень важно.

Осциллограммы напряжения

Орешек знанья твёрд, но всё же
мы не привыкли отступать!
Нам расколоть его поможет
киножурнал «Хочу всё знать!»

Собрать схему отверткой всякий может. А для тех, кто хочет увидеть напряжение и понять, какие реальные процессы происходят, без осциллографа не обойтись. Публикую осциллограммы на выходе 2Т1 устройства плавного пуска.

Не правда ли, логическая нестыковка – двигатель выключен, а напряжение на нём есть?! Это особенность некоторых устройств мягкого пуска. Неприятная и опасная. Да, на двигателе есть напряжение 220В, даже когда он стоит.

Дело в том, что управление происходит только по двум фазам, а третья (L3 – T3) подключена к двигателю напрямую. А так как тока нет, то на всех выходах устройства действует напряжение фазы L3, которое проходит через обмотки двигателя. Та же ерунда бывает и в трехфазных твердотельных реле, .

Будьте осторожны! При обслуживании двигателя, подключенного к устройству мягкого пуска, отключайте вводные автоматы, и проверяйте отсутствие напряжения!

Поскольку нагрузка индуктивная, то синусоида не только режется на куски, но и сильно искажается.

Помеха прёт, и это надо учитывать – возможны сбои в работе контроллеров и другой слаботочки. Чтобы это влияние уменьшить, надо разносить и экранировать цепи, устанавливать дроссели на входе, и др.

Фото сделано да пару секунд до того, как включился внутренний контактор (байпас), который подал полное напряжение на двигатель.

Фото корпуса

Ещё небольшой бонус – несколько фото внешнего вида устройства плавного пуска ABB PSR-25-600.

ABB PSR-25-600 – вид снизу

Опция – разъем и крепления для подключения вентилятора охлаждения, в случае больших нагрузок

ABB PSR-25-600 – входные силовые клеммы и клеммы питания и управления.

Пока всё, вопросы и критика в комментариях по плавному пуску электродвигателей приветствуются!

С майскими праздниками!

Устройство плавного пуска - электротехническое устройство, используемое в асинхронных электродвигателях, которое позволяет во время запуска удерживать параметры двигателя (тока, напряжения и т.д.) в в безопасных пределах. Его применение уменьшает пусковые токи, снижает вероятность перегрева двигателя, устраняет рывки в механических приводах, что, в конечном итоге, повышает срок службы электродвигателя.

Назначение

Управление процессом запуска, работы и остановки электродвигателей. Основными проблемами асинхронных электродвигателей являются:

  • невозможность согласования крутящего момента двигателя с моментом нагрузки,
  • высокий пусковой ток.

Во время пуска крутящий момент за доли секунды часто достигает 150-200%, что может привести к выходу из строя кинематической цепи привода. При этом стартовый ток может быть в 6-8 раз больше номинального, порождая проблемы со стабильностью питания. Устройство плавного пуска позволяют избежать этих проблем, делая разгон и торможение двигателя более медленными. Это позволяет снизить пусковые токи и избежать рывков в механической части привода или гидравлических ударов в трубах и задвижках в момент пуска и остановки двигателей.

Принцип действия устройство плавного пуска

Основной проблемой асинхронных электродвигателей является то, что момент силы, развиваемый электродвигателем, пропорционален квадрату приложенного к нему напряжения, что создаёт резкие рывки ротора при пуске и остановке двигателя, которые, в свою очередь, вызывают большой индукционный ток.

Софтстартеры могут быть как механическими, так и электрическими, либо сочетать то и другое.

Механические устройства непосредственно противодействуют резкому нарастанию оборотов двигателя, ограничивая крутящий момент. Они могут представлять собой тормозные колодки, жидкостные муфты, магнитные блокираторы, противовесы с дробью и прочее.

Данные электрические устройства позволяют постепенно повышать ток или напряжение от начального пониженного уровня (опорного напряжения) до максимального, чтобы плавно запустить и разогнать электродвигатель до его номинальных оборотов. Такие УПП обычно используют амплитудные методы управления и поэтому справляются с запуском оборудования в холостом или слабо нагруженном режиме. Более современное поколение УПП (например, устройства ЭнерджиСейвер) используют фазовые методы управления и потому способны запускать электроприводы, характеризующиеся тяжелыми пусковыми режимами "номинал в номинал". Такие УПП позволяют производить запуски чаще и имеют встроенный режим энергосбережения и коррекции коэффициента мощности.

Выбор устройства плавного пуска


При включении асинхронного двигателя в его роторе на короткое время возникает ток короткого замыкания, сила которого после набора оборотов снижается до номинального значения, соответствующего потребляемой электрической машиной мощности. Это явление усугубляется тем, что в момент разгона скачкообразно растет и крутящий момент на валу. В результате может произойти срабатывание защитных автоматических выключателей, а если они не установлены, то и выход из строя других электротехнических устройств, подключенных к той же линии. И в любом случае, даже если аварии не произошло, при пуске электромоторов отмечается повышенный расход электроэнергии. Для компенсации или полного устранения этого явления используются устройства плавного пуска (УПП).

Как реализуется плавный пуск

Чтобы плавно запустить электродвигатель и не допустить броска тока, используются два способа:

  1. Ограничивают ток в обмотке ротора. Для этого ее делают состоящей из трех катушек, соединенных по схеме «звезда». Их свободные концы выводят на контактные кольца (коллекторы), закрепленные на хвостовике вала. К коллектору подключают реостат, сопротивление которого в момент пуска максимальное. По мере его снижения ток ротора растет и двигатель раскручивается. Такие машины называются двигателями с фазным ротором. Они используются в крановом оборудовании и в качестве тяговых электромоторов троллейбусов, трамваев.
  2. Уменьшают напряжение и токи, подаваемые на статор. В свою очередь, это реализуется с помощью:

а) автотрансформатора или реостата;

б) ключевыми схемами на базе тиристоров или симисторов.

Именно ключевые схемы и являются основой построения электротехнических приборов, которые принято назвать устройствами плавного пуска или софтстартерами. Обратите внимание, что частотные преобразователи так же позволяют плавно запустить электродвигатель, но они лишь компенсируют резкое возрастание крутящего момента, не ограничивая при этом пускового тока.

Принцип работы ключевой схемы основывается на том, что тиристоры отпираются на определенное время в момент прохождения синусоидой ноля. Обычно в той части фазы, когда напряжение растет. Реже – при его падении. В результате на выходе УПП регистрируется пульсирующее напряжение, форма которого лишь приблизительно похожа на синусоиду. Амплитуда этой кривой растет по мере того, как увеличивается временной интервал, когда тиристор отперт.

Критерии выбора софтстартера

По степени снижения степени важности критерии выбора устройства располагаются в следующей последовательности:

  • Мощность.
  • Количество управляемых фаз.
  • Обратная связь.
  • Функциональность.
  • Способ управления.
  • Дополнительные возможности.

Мощность

Главным параметром УПП является величина I ном – сила тока, на которую рассчитаны тиристоры. Она должна быть в несколько раз больше значения силы тока, проходящего через обмотку двигателя, вышедшего на номинальные обороты. Кратность зависит от тяжести пуска. Если он легкий – металлорежущие станки, вентиляторы, насосы, то пусковой ток в три раза выше номинального. Тяжелый пуск характерен для приводов, имеющих значительный момент инерции. Таковы, например, вертикальные конвейеры, пилорамы, прессы. Ток выше номинального в пять раз. Существует и особо тяжелый пуск, который сопровождает работу поршневых насосов, центрифуг, ленточных пил... Тогда I ном софтстартера должен быть в 8-10 раз больше.

Тяжесть пуска влияет и на время его завершения. Он может длиться от десяти до сорока секунд. За это время тиристоры сильно нагреваются, поскольку рассеивают часть электрической мощности. Для повторения им надо остыть, а на это уходит столько же, сколько на рабочий цикл. Поэтому если технологический процесс требует частого включения-выключения, то выбирайте софтстартер как для тяжелого пуска. Даже если ваше устройство не нагружено и легко набирает обороты.

Количество фаз

Можно управлять одной, двумя или тремя фазами. В первом случае устройство в большей степени смягчает рост пускового момента, чем тока. Чаще всего используются двухфазные пускатели. А для случаев тяжелого и особо тяжелого пуска – трехфазные.

Обратная связь

УПП может работать по заданной программе – увеличить напряжение до номинала за указанное время. Это наиболее простое и распространенное решение. Наличие обратной связи делает процесс управления более гибким. Параметрами для нее служат сравнение напряжения и вращающего момента или фазный сдвиг между токами ротора и статора.

Функциональность

Возможность работать на разгон или торможение. Наличие дополнительного контактора, который шунтирует ключевую схему и позволяет ей остыть, а также ликвидирует несимметричность фаз из-за нарушения формы синусоиды, которое приводит к перегреву обмоток.

Способ управления

Бывает аналоговым, посредством вращения потенциометров на панели, и цифровым, с применением цифрового микроконтроллера.

Дополнительные функции

Все виды защиты, режим экономии электроэнергии, возможность пуска с рывка, работы на пониженной скорости (псевдочастотное регулирование).

Правильно подобранный УПП увеличивает вдвое рабочий ресурс электродвигателей, экономит до 30 процентов электроэнергии.

Зачем нужно устройство плавного пуска (софтстартера)

Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска (софтстартер). С чем это связано? В нашей статье мы постараемся осветить этот вопрос.

Асинхронные двигатели используются уже более ста лет, и за это время относительно мало изменилось их функционирование. Запуск этих устройств и связанные с ним проблемы хорошо известны их владельцам. Пусковые токи приводят к просадкам напряжения и перегрузкам проводки, вследствие чего:

    некоторая электротехника может самопроизвольно отключаться;

    возможен сбой оборудования и т. д.

Своевременно установленный приобретенный и подключенный софтстартер позволяет избежать лишних трат денег и головной боли.

Что такое пусковой ток

В основе принципа действия асинхронных двигателей лежит явление электромагнитной индукции. Наращивание обратной электродвижущей силы (э. д. с), которая создается путем применения изменяющегося магнитного поля во время запуска двигателя, приводит к переходным процессам в электрической системе. Этот переходной режим может повлиять на систему электропитания и другое оборудование, подключенное к нему.

Во время запуска электродвигатель разгоняется до полной скорости. Продолжительность начальных переходных процессов зависит от конструкции агрегата и характеристик нагрузки. Пусковой момент должен быть наибольшим, а пусковые токи – наименьшими. Последние влекут за собой пагубные последствия для самого агрегата, системы электроснабжения и оборудования, подключенного к нему.

В течение начального периода пусковой ток может достигать пяти-восьмикратного тока полной нагрузки. Во время пуска электродвигателя кабели вынуждены пропускать больше тока, чем во время периода стабильного состояния. Падение напряжения в системе также будет намного больше при пуске, чем во время стабильной работы – это становится особенно очевидным при запуске мощного агрегата или большого числа электродвигателей одновременно.

Способы защиты электродвигателя

Поскольку использование электродвигателей стало широко распространенным, преодоление проблем с их запуском стало проблемой. На протяжении многих лет для решения этих задач были разработано несколько методов, каждый из которых имеет свои преимущества и ограничения.

В последнее время были достигнуты значительные успехи в использовании электроники в регулировании электроэнергии для двигателей. Все чаще при запуске электроприводов насосов, вентиляторов применяются устройство плавного пуска. Всё дело в том, что прибор имеет ряд особенностей.

Особенностью устройства пуска является то, что он плавно подаёт на обмотки двигателя напряжение от нуля до номинального значения, позволяя двигателю плавно разгоняться до максимальной скорости. Развиваемый электродвигателем механический момент пропорционален квадрату приложенного к нему напряжения.

В процессе пуска УПП постепенно увеличивает подаваемое напряжение, и электромотор разгоняется до номинальной скорости вращения без большого момента и пиковых скачков тока.

Виды устройств плавного пуска

На сегодняшний день для плавного запуска техники используются три типа УПП: с одной, двумя и со всеми управляемыми фазами.

Первый тип применяется для однофазного двигателя для обеспечения надежной защиты от перегрузки, перегрева и снижения влияния электромагнитных помех.

Как правило, схема второго типа помимо полупроводниковой платы управления включает в себя байпасный контактор. После того как двигатель раскрутится до номинальной скорости, байпасный контактор срабатывает и обеспечивает прямую подачу напряжения на электродвигатель.

Трехфазный тип является самым оптимальным и технически совершенным решением. Он обеспечивает ограничение тока и силы магнитного поля без перекосов по фазам.

Зачем же нужно устройство плавного пуска?

Благодаря относительно невысокой цене популярность софтстартеров набирает обороты на современном рынке промышленной и бытовой техники. УПП для асинхронного электродвигателя необходимо для продления его срока службы. Большим преимуществом софтстартера является то, что пуск осуществляется с плавным ускорением, без рывков.

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

Преимущества регистрации

Вы сможете:

  • Приобретать оборудование со скидкой сразу после регистрации
  • Совершать покупки намного быстрее и удобнее
  • Следить за выполнением заказов
  • Смотреть историю своих заказов, получать рекомендации
  • Получить накопительную систему скидок на все оборудование
  • Участвовать в акциях
  • Получать первыми информацию о новых товарах и услугах
  • Видеть документы по отгрузкам
  • Получать консультации у специалиста, прикрепленного к вашей компании

Получите доступ ко всем предложениям

Войдите под своим логином или пройдите легкую процедуру регистрации и получите доступ ко всем горячим предложениям

Зарегистрироваться

Похожие видеообзоры

Как достичь оптимального энергосбережения в гидравлических системах с центробежными насосами? Этот вопрос сегодня все чаще возникает у специалистов и руководителей предприятий. Так какие же приборы способны сократить период окупаемости и повысить энергоэффективность – устройства плавного пуска, частотно-регулируемые приводы или использование параллельной схемы управления насосами? Авторы статьи предлагают тщательно проведенный анализ различных технических решений, иллюстрированный примерами внедрения на производстве, схемами и таблицами.

ООО «АББ», г. Москва


Обеспечение энергоэффективности – одна из наиболее актуальных и в то же время сложных задач в настоящее время. Сокращение затрат на потребление электроэнергии – это один из методов повышения рентабельности производства и эффективной эксплуатации технологических линий. Общий анализ предприятий в самых различных областях применения показывает, что затраты, связанные с закупкой оборудования и простоем производства из-за обслуживания и ввода нового оборудования в эксплуатацию, могут быть частично компенсированы за счет экономии на потреблении электроэнергии.


Энергоэффективные технологии – одно из приоритетных направлений компании АББ. Самые современные методы и разработки для обеспечения наиболее эффективной эксплуатации нашли свое применение в современном оборудовании компании АББ – преобразователях частоты и устройствах плавного пуска*, которые широко применяются для управления приводными механизмами насосных установок и позволяют существенно сократить потребление электроэнергии на объектах водоподготовки и водоочистки.

Часто используемый механический способ управления подачей насоса, или метод дросселирования, является крайне неэффективным с точки зрения экономии электроэнергии. В связи с этим возникает вопрос: какое из двух технических решений является самым экономичным методом снижения потребления энергии – частотно-регулируемые приводы или циклическое управление (рис. 1)? По существу, характеристика гидравлической системы, в которой используется центробежный насос, является определяющим фактором при выборе одного или другого метода управления.




Рис. 1. Регулирование расхода в системе посредством дросселирования, циклического и частотного управления

В сфере обработки сточных вод включение/выключение центробежных насосов, как правило, выполняется под контролем системы управления технологическим процессом. Остаточная вода (то есть вода, поступающая из жилых или коммерческих зданий) обычно собирается в отстойниках или резервуарах для сточных вод до момента ее перекачки с помощью насосов на муниципальные водоочистные станции . С учетом некоторой периодичности, использование устройств плавного пуска значительно снижает риск засорения насосов отходами, содержащимися в воде.


Циклическое управление является интересной альтернативой частотно-регулируемому приводу, несмотря на утрату гибкости при регулировании расхода. Другими словами, устройство плавного пуска считается подходящей и конкурентоспособной технологией, защищающей асинхронный электродвигатель от электрических перегрузок, механических ударов и вибрации при пуске, а также от гидравлических ударов в трубопроводной системе, возникающих при останове насоса. Кроме того, электродвигатель эксплуатируется в оптимальной рабочей точке и выключается на остальное время.

В следующих разделах приводится анализ энергосбережения и окупаемости решений управления с частотным регулированием и циклического управления для двух центробежных насосов (90 кВт и 350 кВт).

Типовая насосная система

При разработке насосной системы основным условием является обеспечение требуемого расхода Qop [м3/ч]. В идеальной системе выбранный насос имеет характеристику Qbep [м3/ч], совпадающую с характеристикой Qop [м3/ч]. На практике обычно выбирается насос большего типоразмера (рис. 2). В результате чего насос работает со сниженным гидравлическим КПД в большей части диапазона производительности. Сказанное выше проиллюстрировано на рис. 3 для двух центробежных насосов Aurora с номинальной мощностью 90 кВт и 350 кВт.


Таблица 1. Сравнительная характеристика параметров двух насосов



Рис. 2. Выбор насоса для промышленной установки




Рис. 3. Уменьшение гидравлического КПД в насосах 90 кВт и 350 кВт вследствие изменения параметров компонентов системы на 15%

Для анализа возможностей по экономии электроэнергии в этих насосах рассматривались три различные гидравлические системы: с преобладанием напора на преодоление трения, то есть отношение (?) статического напора Hst [м] к максимальной гидравлической высоте Hmax [м] составляет 5 %; с преобладанием статического напора (? составляет 50 %); с комбинированным напором (? составляет 25 %) (рис. 4).




Рис. 4. Гидравлические системы, выбранные для анализа возможного энергосбережения

Рабочие характеристики преобразователя частоты, устройства плавного пуска и электродвигателя


Преобразователи частоты имеют высокий КПД (ηconv), который естественным образом уменьшается, когда происходит снижение выходной мощности по отношению к номинальному значению. При работе УПП в установившемся режиме, то есть при активации байпаса, КПД устройств плавного пуска составляет практически 100 %. Следует отметить, что КПД устройств плавного пуска заметно снижается с увеличением количества пусков в час и сокращением интервалов рабочего времени, что обусловлено дополнительными потерями Джоуля при пуске и останове электро­двигателя, а также работой тиристоров (рис. 5).




Рис. 5.
Изменение электрического КПД (%) устройства плавного пуска и преобразователя частоты с насосной нагрузкой

Принятые недавно более строгие стандарты (классы IE) гарантируют повышенный КПД электродвигателя – при его работе под нагрузкой (рис. 6 и 7). На КПД электродвигателя (в строгой зависимости от класса) влияет использование либо преобразователя частоты, либо устройства плавного пуска: КПД снижается при питании от быстродействующего выходного инвертора ПЧ вследствие наличия гармонических искажений по току и напряжению, но не изменяется при питании от УПП после окончания переходного процесса разгона благодаря синусоидальной форме напряжения на выходе устройства.


Рис. 6. Влияние класса энергоэффективности электродвигателя на КПД насоса


Рис. 7. Изменение КПД электродвигателя с гидравлической нагрузкой

Влияние изменения характеристик компонентов системы, класса энергоэффективности электродвигателя и гармонических потерь в реальной системе приведено в табл. 2.

Таблица 2. Влияние большего типоразмера системы, класса электродвигателя и потерь от гармоник
на потребление электроэнергии (Pn =90 кВт – частота коммутации 4 кГц)




Экономия электроэнергии


Энергосбережение, достигнутое при использовании частотного и циклического управления в насосных системах 90 кВт и 350 кВт, показано на рис. 8 и 9. В системах с преобладанием напора на преодоление трения (? = 5 %) частотное управление обеспечивает более высокую экономию энергии практически во всем рабочем диапазоне (от 7 до 98 %) для обеих насосных систем. В случае насоса 90 кВт и в системе с преобладанием статического напора (? = 50 %) циклическое управление является лучшим техническим решением по сравнению с использованием частотного преобразователя для всех рабочих точек. Преобразователь частоты обеспечивает чуть более высокую экономию энергии для насоса мощностью 350 кВт, но только в диапазоне от 75 до 92 % производительности насоса. При рассмотрении комбинированной гидравлической системы (? = 25 %), управление посредством частотно-регулируемого привода позволяет получить более высокую экономию электроэнергии только для насосов с производительностью выше 28 % (для системы 90 кВт) и 24 % (для системы 350 кВт). В действительности, самая высокая экономия энергии при использовании частотного управления наблюдается в диапазоне производительности насоса от 15 до 20 %.





Рис. 8.
для насоса 90 кВт




Рис. 9. Экономия энергии [%] при частотном и циклическом управлении
для насоса 350 кВт

В отличие от преобразователей частоты, в которых присутствуют потери на полупроводниковых компонентах при номинальном режиме работы, устройства плавного пуска, в этом случае, работают через байпасный контактор, таким образом тиристоры не задействованы (рис. 10). И следовательно, нет дополнительных тепловых потерь. Эксплуатационные и системные характеристики, при которых предпочтителен выбор того или иного способа управления для регулирования производительности насоса, приведены на рис. 11**.




Рис. 10. Оптимальный КПД для насоса 90 кВт при байпасировании через устройство плавного пуска
при высоких нагрузках (90–100 % расчетной производительности)




Рис. 11. Контрольная точка, в которой экономия при использовании циклического управления становится выше,
чем при использовании решения с частотно-регулируемым приводом

Окупаемость инвестиций


Одним из важнейших факторов для заказчиков является расчет окупаемости инвестиций, в которые входят дополнительные расходы в связи с простоем оборудования во время монтажа и ввода в эксплуатацию устройства плавного пуска.

Стоимость преобразователя частоты в три раза выше стоимости устройства плавного пуска для насосов с номинальной мощностью до 25 кВт, а для насосов 350 кВт – в пять раз . Общие начальные инвестиции при частотном регулировании или циклическом управлении рассчитываются как сумма стоимости частотного преобразователя или устройства плавного пуска и плюс процентная доля расходов, связанных с простоем оборудования, по отношению к расходам, затраченным на протяжении всего жизненного цикла работы технологической линии .

Для частотных преобразователей и устройств плавного пуска эта доля составляет 7,5 %.

Стоимость индивидуальных компонентов может различаться по нескольким причинам. Прежде всего, следует отметить, что низковольтные частотные преобразователи чаще применяются при продолжительном режиме включения электродвигателя, а не в режиме пуска/останова, и обеспечивают более точное управление. Однако биполярные транзисторы с изолированным затвором (IGBT), применяемые в частотных преобразователях, требуют поддержания определенного температурного режима и охлаждения, что делает их достаточно дорогостоящими элементами и соответственно повышает стоимость частотных преобразователей по сравнению с устройствами плавного пуска такой же номинальной мощности. В устройствах плавного пуска полупроводниковые силовые элементы – тиристоры – отрабатывают только режимы пуска и останова со средним временем каждого режима около 15 секунд. Стоит отметить, что недорогие и надежные тиристоры не требуют постоянного принудительного охлаждения.

Период окупаемости для преобразователей частоты и циклического управления расходом показан на рис. 12 и 13 для электродвигателей 90 кВт и 350 кВт для трех гидравлических систем: ? = 5 %, 25 % и 50 %.




Рис. 12. Период окупаемости решений с частотным и циклическим управлением (устройство плавного пуска)
для насоса 90 кВт


Рис. 13. Период окупаемости для решений с частотным и циклическим управлением (устройство плавного пуска)
для насоса 350 кВт


Решения для параллельной схемы управления насосами


Во многих гидравлических системах оптимальную экономию электроэнергии с хорошей окупаемостью капиталовложений можно получить путем применения параллельной схемы управления насосами***, в которой используются как преобразователи частоты, так и устройства плавного пуска.


Рис. 14. Решение для системы с четырьмя параллельными насосами
(гидравлическая система с преобладанием напора на преодоление трения)

Таблица 3. Схема управления в системе с четырьмя параллельными насосами





В гидравлических системах с преобладанием напора на преодоление трения (? = 5 %) и с четырьмя параллельными насосами – каждый насос с номинальной мощностью 350 кВт (2500 м куб./ч) – оптимально использовать два преобразователя частоты и два устройства плавного пуска (рис. 14). В схеме, обеспечивающей наилучшее решение по окупаемости и гибкости управления, два насоса, 1 и 2, управляются устройствами плавного пуска, а насосы 3 и 4 – преобразователями частоты (см. табл. 3). Насосы с устройством плавного пуска работают с максимальной производительностью. Увеличив частоту вращения насосов, управляемых преобразователями частоты, до номинальной можно обеспечить максимальную производительность системы. В смешанной гидравлической системе (гидравлическая система со статическим напором/с преобладанием напора для преодоления трения) (? = 25 %), схема, позволяющая получить оптимальное решение с точки зрения окупаемости инвестиций и гибкости управления, представляет собой три насоса, первые два из которых управляются устройствами плавного пуска, а третий насос – преобразователем частоты (см. рис. 15 и табл. 5).




Рис. 15. Решение для системы с тремя параллельными насосами
(гидравлическая система со статическим напором/с преобладанием напора на преодоление трения)

Таблица 4. Схема управления расходом в системе с тремя параллельными насосами
(комбинированная гидравлическая система)





Для обеих систем начальные инвестиции по закупке устройств плавного пуска и преобразователей частоты трансформируются в экономическую прибыль менее чем за 1,5 года при условии, что регулируемый расход составляет менее 80 % от общей производительности (рис. 16).

Таблица 5. Параметры






Рис. 16. Расчетный период окупаемости для двух установок,
с параллельным управлением насосов от преобразователей частоты и устройств плавного пуска

Лучшее решение?


Анализ эффективности систем частотного и циклического регулирования расхода был проведен для двух центробежных насосов (90 кВт и 350 кВт) с двигателями до 1000 В. Полученные результаты свидетельствуют о том, что управление посредством частотного регулирования является наилучшим решением в гидравлических системах с преобладанием напора на преодоление потерь на трение (транспортировка жидкости без разности высот в случае использования циркуляционных насосов). В системах с преобладанием статического напора рекомендуется использовать циклическое управление. Следует избегать применения преобразователей частоты в системах с пологими характеристиками насоса и нагрузки из-за риска нестабильности и поломки .

Устройства плавного пуска являются наиболее перспективным техническим решением для установок водоочистки и водоотведения, в которых необходимо осуществлять включение/выключение насоса для откачки жидкости из коллекторов и последующее перемещение сточных вод на очистные сооружения. Устройства плавного пуска отличаются высокой надежностью и имеют встроенные функции для устранения гидроударов как при пуске, так и при останове системы. Однако максимального энергосбережения и минимального периода окупаемости для широкого ряда гидравлических систем можно достичь путем применения параллельных схем управлением насосами, в которых используется комбинация пре­образователей частоты и устройств плавного пуска. Опираясь на ноу-хау в области автоматизации и широкий ассортимент низковольтного оборудования для автоматизации, компания АББ предлагает и другие решения для эффективного использования энергии в самых различных областях применения.

______________________________________
* Устройства плавного пуска регулируют уровень напряжения, подаваемого на электродвигатель, за счет чего обеспечивается плавный запуск и останов привода.

** При переводе экономии энергии в процентах (в отношении фиксированной скорости и дросселирования) в показатель экономической эффективности предполагается, что насос работает 8760 часов в год (330 x 24) при цене 0,065 долл. США за 1 кВт-ч электричества .

*** Для оптимального регулирования расхода в параллельных схемах работает один насос до тех пор, пока не будет достигнута максимальная производительность, после чего гидравлическая нагрузка разделяется на два одновременно работающих насоса . При достижении второй контрольной точки активируются три насоса и т.д.

Литература


1. ITT Industries (2007). ITT’s Place in the cycle of water: Everything but the pipes.
2. Aurora Pump (Pentair Pump Group) June 1994, United States.
3. IEC 60034-31:2009. Rotating electrical machines. Part 31: Guide for the selection and application of energy-efficient motors including variable speed applications.
4. Brunner, C. U. (4–5 February 2009). Efficiency classes: Electric motors and systems. Motor energy performance standards event, Sydney (Australia). www.motorsystems.org .
5. Department of Energy (DOE). Energy International Agency (EIA) (June 2009). Average retail price of electricity to ultimate customers.
6. Sagarduy, J. (January 2010). Economic evaluation of reduced voltage starting methods. SECRC/PT-RM10/017.
7. Hydraulic Institute (August 2008). Pumps & Systems, Understanding pump system fundamentals for energy efficiency. Calculating cost of ownership.
8. ITT Flygt (2006). Cirkulationspumpar med vеt motor för värmesystem i kommersiella byggnader.
9. Vogelesang, H. (April 2009). Energy efficiency. Two approaches to capacity control. World Pumps Magazine.

 

Возможно, будет полезно почитать: