Изучение переменных звезд каких типов. Пульсирующие переменные звезды. Внутренние переменные звезды

Продолжаю серию статей «астрономический справочник». И сегодня рассмотрю ещё одну важную тему, которая пригодится вам при чтении статей из раздела - переменные звёзды . По прошествии времени звёзды могут менять свою яркость (блеск), такие звёзды называются переменными. Переменные звёзды меняют свой блеск из-за физических изменений состояния самой звезды, а также из-за затмений, если речь идёт о двойных (кратных) системах - это затменно-переменные звёзды.

Бывают следующие типы физических переменных звёзд:

  • пульсирующие - характеризуются непрерывными и плавными изменениями блеска: цефеиды, мириды, типа RR Лиры, неправильные, полуправильные;
  • эруптивные - характеризуются неправильными, быстрыми и сильными изменениями блеска, вызванными процессами, носящими взрывообразный (эруптивный) характер: новые звёзды, сверхновые.

Переменные звёзды имеют специальные обозначения. Эти звёзды в каждом созвездии обозначают последовательностью букв латинского алфавита: R, S, Т, …, Z, RR, RS, …, RZ, SS, ST, …. ZZ, АА, …, AZ, QQ, …, QZ с добавлением названия соответствующего созвездия (RR Lyr). Таким образом можно обозначить 334 переменных звезды в каждом созвездии. Если количество превышает 334, то следующие обозначаются V 335, V 336 и т. д.

Затменно-переменные звёзды

Затменно-переменные звёзды - тесные пары звёзд, которые нельзя разделить даже в самые мощные телескопы, видимая звёздная величина меняется из-за периодически наступающих для наблюдателя с Земли затмений одного компонента системы другим. Звезда с большей светимостью - главная, с меньшей - спутник. Самыми популярными примерами являются: β Персея (Алголь) и β Лиры.

Из-за перекрытия одной звезды другой суммарная звёздная величина изменяется периодически.

Кривая блеска - график, который изображает изменение потока излучения звезды в зависимости от времени. Когда звезда имеет максимальную яркость, то это эпоха максимума , минимальную (или наибольшую ) - эпохой минимума . Разность между максимумом и минимумом звёздных величин называется амплитуда , а временной интервал между двумя максимумами (минимумами) - периодом переменности .

График изменения потока излучения звезды от времени

Исходя из данных графика можно определить относительные размеры компонентов, получить общее представление об их форме. Минимальные значение (впадины) на графике могут отличаться по значению звёздной величины в зависимости от того, какая из звёзд перекрыла своего компонента: главная спутника или спутник главную.

На сегодня известно около 4000 затменных звёзд разных типов. Минимальный известный астрономами период обращения звёзд - чуть меньше часа, максимальный - 57 лет.

Физические переменные звёзды

Цефеиды

Цефеиды - пульсирующие гиганты F и G, которые получили своё название в честь звезды δ (дельта) Цефея. Период пульсации колеблется в диапазоне от 1,5 до 50 суток. Амплитуда (разница между максимумом и минимумом) блеска цефеид может достигать 1,5 m . Типичным представителем цефеид является Полярная звезда.

При изменении блеска изменяются температура фотосферы, показатели цвета, радиус фотосферы. Пульсация звезды происходит когда непрозрачность наружных слоёв звезды задерживает некоторую часть излучения внутренних слоёв. Это связано с веществом гелий, который вначале ионизируется, а затем охлаждается и рекомбинируется.

График изменения блеска η Aql (эта Орла) и δ Cep (дельта Цефея)

В нашей галактике Млечный Путь на сегодня насчитывается больше 700 цефеид.

В свою очередь цефеиды делятся ещё на 3 группы:

  1. Дельта цефеиды (Cδ) - классические цефеиды.
  2. Цефеиды типа W Девы (CW) - расположены не в плоскости галактики. Как правило встречаются в . Интересно то, что максимальной температуры они достигают в промежутках между максимумом и минимумом светимости.
  3. Дзета цефеиды (Cζ) - малоамплитудные цефеиды. Обладают симметричными кривыми блеска.

Звёзды типа RR Лиры

В отдельный тип относятся звёзды типа RR Лиры . Это гиганты спектрального класса A. Период переменности для этих звёзд 0,2 - 1,2 суток. Они очень быстро меняют блеск, при этом амплитуда достигает одной звёздной величины. С изменением блеска изменяется показатель цвета, что связано с изменением температуры фотосферы. При максимуме звезда светлеет (белеет), т.е. становится горячее. Также изменяется радиус звезды (лучевые скорости).

Подавляющее большинство звёзд этого типа сосредоточено в шаровых звёздных скоплениях. Ниже на (спектр-светимость) показано примерное расположение цефеид и звёзд типа RR Лиры:

Изображение взято с сайта Википедия

Мириды

Мириды по-другому называют долгопериодическими переменными звёздами . Это звёзды типа ω (омега) Кита. Амплитуда изменения блеска достигает 10-й (!) звёздной величины. Период переменности сильно разнится и лежит в интервале 90 - 730 суток.

К миридам относятся спектрального класса M (и дополнительных S и N - ещё более холодных).

Переменность блеска возникает из-за колебаний температуры. К миридам относятся звёзды, у которых в спектрах появляются эмиссионные линии.

Неправильные переменные

Это звёзды, у которых происходит непредсказуемое изменение блеска. Их сложно наблюдать и приходится затрачивать больше времени на определение их характеристик. Представителем это типа звёзд является μ (мю) Цефея.

Амплитуда изменения блеска не превышает одну звёздную величину. Моменты максимумов или минимумов нельзя определить по формулам, или посчитать их периодичность. Кривая изменения блеска может иметь период до 4500 суток. В книге по астрономии нашел график звезды μ Цефея, яркость которого вычислялась с 1916 по 1928 года:

Если получается определить среднее значение цикла и наблюдается некоторая периодичность, их называют полуправильными , в ином случае - неправильными .

Эруптивные переменные

Переменная карликовая звезда, которая проявляет свою переменность в виде повторяющихся вспышек, объясняющихся различного рода выбросами вещества (эрупций) называется эруптивной переменной. Эруптивные звёзды могут быть как молодыми, так и старыми.

Молодые звёзды

Звёзды, которые не завершили процесс гравитационного сжатия называются молодыми . Например, T Тельца. К молодым звёздам относятся карлики спектральных классов F и G с эмиссионными линиями в спектре. Много молодых звёзд можно обнаружить в туманности Ориона (в созвездии Ориона), где идёт процесс активного звёздообразования. Установить закономерность изменения таких звёзд невозможно. Амплитуда изменения блеска может достигать 3 m .

Хаотическую переменность объясняют тем, что вокруг молодых звёзд наблюдаются небольшие яркие туманности, что говорит о существовании у них обширных газовых оболочек.

Отдельно выделяют вспыхивающие звёзды типа UV Кита . Это карлики спектральных классов K и M. Они отличаются очень быстрым возрастанием светимости во время вспышек. Менее чем за одну минуту поток излучения может увеличиться в несколько раз. Однако, есть большая группа вспыхивающих звёзд, у которых вспышки длятся продолжительное время, превышающее несколько минут. В скоплении Плеяды все звёзды относятся к таким звёздам.

На сегодня обнаружено всего около 80 вспыхивающих звёзд, имеющих небольшую светимость и их можно наблюдать на небольшом удалении от Солнца.

В общем-то и всё, что вам необходимо знать и понимать о переменных звёздах . И теперь, встречая непонятные названия или обозначения типа переменной звезды, вы всегда сможете обратиться к этой статье, чтобы узнать что есть что.

Спасибо что уделили своё время на чтение этой важной темы. Если есть вопросы, не стесняйтесь, пишите в комментариях, будем вместе разбираться.



Звезды, светимость которых меняется за относительно короткие промежутки времени, называются физическими переменными звездами . Изменения светимости этого типа звезд вызваны физическими процессами, которые происходят в их недрах. По характеру переменности различают пульсирующие переменные и эруптивные переменные. В отдельный вид выделяют также новые и сверхновые звезды, которые являются частным случаем эруптивных переменных. Все переменные звезды имеют специальные обозначения, кроме тех, которые были ранее обозначены буквой греческого алфавита. Первые 334 переменные звезды каждого созвездия обозначаны последовательностью букв латинского алфавита (например, R, S, Т, RR, RS, ZZ, AA, QZ) с добавлением названия соответствующего созвездия (например, RR Lyr). Следующие переменные обозначаются V 335, V 336 и т.д. (например, V 335 Cyg).

Физические переменные звезды


Звезды, которые характеризуются особой формой кривой блеска, отображающей плавное периодическое изменение видимой звездной величины и изменение светимости звезды в несколько раз (обычно от 2 до 6), называют физическими переменными звездами или цефеидами . Данный класс звезд был назван именем одной из типичных его представительниц – звезды δ (дельта) Цефея. Цефеиды можно отнести к гигантам и сверхгигантам спектральных классов F и G. Благодаря этому обстоятельству имеется возможность наблюдать их с огромных расстояний, в том числе и далеко за пределами нашей звездной системы - Галактики. Одна из важнейших характеристик цефеид - период. Для каждой отдельно взятой звезды он постоянен с большой степенью точности, но у разных цефеид периоды различны (от суток до нескольких десятков суток). У цефеид одновременно с видимой звездной величиной меняется и спектр. Это означает, что вместе с изменением светимости цефеид происходит и изменение температуры их атмосфер в среднем на 1500°. По смещению спектральных линий в спектрах цефеид обнаружено периодическое изменение их лучевых скоростей. Кроме того, периодически меняется и радиус звезды. Такие звезды как δ Цефея относятся к молодым объектам, которые располагаются преимущественно вблизи основной плоскости нашей звездной системы - Галактики. Цефеиды встречаются и в , но отличаются большим возрастом и несколько меньшей светимостью. Эти звезды, достигшие стадии цефеид, менее массивные, поэтому эволюционируют медленнее. Их называют звездами типа W Девы. Такие наблюдаемые особенности цефеид свидетельствуют о том, что атмосферы этих звезд испытывают регулярные пульсации. Таким образом, в них имеются условия для поддержания в течение долгого времени на постоянном уровне особого колебательного процесса.


Рис. Цефеиды


Задолго до того, как удалось выяснить природу пульсаций цефеид , было установлено существование зависимости между их периодом и светимостью. При наблюдении цефеид в Малом Магеллановом Облаке – одной из ближайших к нам звездных систем - было замечено, что чем меньше видимая звездная величина цефеиды (т.е. чем ярче она кажется), тем больше период изменения ее блеска. Эта зависимость оказалась линейной. Из того, что все принадлежали одной и той же системе, следовало, что расстояния до них практически одинаковы. Следовательно, обнаруженная зависимость одновременно оказалась зависимостью между периодом Р и абсолютной звездной величиной М (или светимостью L) для цефеид. Существование зависимости между периодом и абсолютной звездной величиной цефеид играет значительно важную роль в астрономии: благодаря ей определяют расстояния до очень далеких объектов, когда другие методы не могут быть применены.

Кроме цефеид, существуют также другие типы пульсирующих переменных звезд . Самыми известными среди них являются звезды типа RR Лиры, которые ранее назывались короткопериодическими цефеидами из-за своего сходства с обычными цефеидами. Звезды типа RR Лиры - гиганты спектрального класса А, светимость которых превышающей светимость Солнца более чем в 100 раз. Периоды звезд типа RR Лиры заключены в пределах от 0,2 до 1,2 суток, а амплитуда изменения блеска достигает одной звездной величины. Другим интересным типом пульсирующих переменных является небольшая группа звезд типа β Цефея (или типа β Большого Пса), принадлежащих преимущественно к гигантам ранних спектральных подклассов В. По характеру переменности и форме кривой блеска эти звезды напоминают звезды типа RR Лиры, отличаясь от них исключительно малой амплитудой изменения звездной величины. Периоды заключены в пределах от 3 до 6 часов, причем, как и у цефеид, наблюдается зависимость периода от светимости.



Кроме пульсирующих звезд с правильным изменением светимости существует также несколько типов звезд, характер кривой блеска которых меняется. Среди них можно выделить звезды типа RV Тельца , изменения светимости которых характеризуются чередованием глубоких и мелких минимумов, происходящим с периодом от 30 до 150 дней и с амплитудой от 0,8 до 3,5 звездных величин. Звезды типа RV Тельца принадлежат к спектральным классам F, G или К. Звезды типа m Цефея принадлежат к спектральному классу М и называются красными полуправильными переменными . Они отличаются иногда очень сильными неправильностями изменения светимости, происходящими за время от нескольких десятков до нескольких сотен суток. Рядом с полуправильными переменными на диаграмме спектр – светимость располагаются звезды класса М, в которых не удается обнаружить повторяемости изменения светимости (неправильные переменные). Ниже их находятся звезды с эмиссионными линиями в спектре плавно меняющие свою светимость за очень большие промежутки времени (от 70 до 1300 дней) и в очень больших пределах. Замечательной представительницей звезд этого типа является о (омикрон) Кита, или, как иначе называемая Мира. Этот класс звезд называют долгопериодическими переменными типа Миры Кита . Длина периода у долгопериодических переменных звезд колеблется около среднего значения в пределах от 10% в обе стороны.


Среди звезд-карликов с меньшей светимостью также имеются переменные различных типов, общее число которых примерно в 10 раз меньше количества пульсирующих гигантов. Эти звезды проявляют свою переменность в виде периодически повторяющихся вспышек, природа которых объясняется различного рода выбросами вещества, или эрупциями. Поэтому всю эту группу звезд вместе с новыми звездами называют эруптивными переменными . Стоит отметить, что среди них есть звезды самой различной природы, как находящиеся на ранних этапах своей эволюции, так и завершающие свой жизненный путь. Самыми молодыми звездами, по-видимому, еще не завершившими процесса гравитационного сжатия, следует считать переменные типа τ (тау) Тельца . Это карлики спектральных классов чаще всего F - G, в большом количестве обнаруженные, например, в туманности Ориона. Очень похожи на них звезды типа RW Возничего, принадлежащие спектральным классам от В до М. У всех этих звезд изменение светимости происходит настолько неправильно, что нельзя установить никакой закономерности.



Эруптивные переменные звезды особого типа, у которых хотя бы один раз наблюдалась вспышка (внезапное резкое увеличение светимости) не менее чем на 7-8 звездных величин, называются новыми . Обычно во время вспышки новой звезды видимая звездная величина уменьшается на 10m-13m, что соответствует росту светимости в десятки и сотни тысяч раз. После вспышки новые звезды являются очень горячими карликами. В максимальной фазе вспышки они напоминают сверхгиганты классов А - F. Если вспышка одной и той же новой звезды наблюдалась не менее двух раз, то такая новая называется повторной. Возрастание светимости у повторных новых звезд несколько меньше, чем у типичных новых. Всего в настоящее время известно около 300 новых звезд, из них около 150 появились в нашей Галактике и свыше 100 - в туманности Андромеды. У известных семи повторных новых в сумме наблюдалось около 20 вспышек. Многие (возможно даже все) новые и повторные новые являются тесными двойными системами. После вспышки новые звезды часто обнаруживают слабую переменность. Изменение светимости новой звезды показывает, что во время вспышки происходит внезапный взрыв, вызванный неустойчивостью, возникшей в звезде. Согласно различным гипотезам, эта неустойчивость может возникать у некоторых горячих звезд в результате внутренних процессов, определяющих выделение энергии в звезде, либо вследствие воздействия каких-либо внешних факторов.

Сверхновые

Сверхновыми называются звезды, которые вспыхивают так же, как новые и достигают абсолютной звездной величины от -18m до -19m и даже -21m в максимуме. У сверхновых происходит возрастание светимости более чем в десятки миллионов раз. Общая энергия, излучаемая сверхновой за время вспышки, в тысячи раз больше, чем для новых. Фотографически зарегистрировано около 60 вспышек сверхновых в других галактиках, причем нередко их светимость оказывалась сравнимой с интегральной светимостью всей галактики, в которой произошла вспышка. По описаниям более ранних наблюдений, выполненных невооруженным глазом, установлено несколько случаев вспышек сверхновых в нашей Галактике. Самой интересной из них является Сверхновая 1054 г., вспыхнувшая в созвездии Тельца и наблюдавшаяся китайскими и японскими астрономами в виде внезапно появившейся "звезды-гостьи", которая казалась ярче Венеры и была видна даже днем. Хотя это явление похоже на вспышку обычной новой, оно отличается от нее своим масштабом, плавной и медленно меняющейся кривой блеска и спектром. По характеру спектра вблизи эпохи максимума различаются два типа сверхновых звезд. Большой интерес представляют быстро расширяющиеся , которые в нескольких случаях удалось обнаружить на месте вспыхнувших сверхновых звезд I типа. Самой замечательной из них является знаменитая Крабовидная туманность в созвездии Тельца. Форма эмиссионных линий этой туманности говорит о ее расширении со скоростью около 1000 км/сек. Современные размеры туманности таковы, что расширение с этой скоростью могло начаться не более 900 лет назад, т.е. как раз в эпоху вспышки Сверхновой 1054 г.


Пульсары

В августе 1967 г. в английском городе Кембридж было зафиксировано космическое радиоизлучение, которое исходило от точечных источников в виде следующих друг за другом четких импульсов. Продолжительность отдельного импульса у таких источников может составлять от нескольких миллисекунд до нескольких десятых долей секунды. Резкость импульсов и правильность их повторений позволяют с большой точностью определить периоды пульсаций этих объектов, которые названы пульсарами . Период одного из пульсаров равен примерно 1,34 сек, в то время как у других периоды заключены в пределах от 0,03 до 4 сек. В настоящее время известно около 200 пульсаров. Все они дают сильно поляризованное радиоизлучение в широком диапазоне длин волн, интенсивность которого круто возрастает с ростом длины волны. Это означает, что излучение имеет нетепловую природу. Удалось определить расстояния до многих пульсаров, оказавшиеся в пределах от сотен до тысяч парсеков, что говорит о сравнительной близости объектов, заведомо принадлежащих нашей Галактике.

Самый известный пульсар , который принято обозначать номером NP 0531, в точности совпадает с одной из звезд в центре Крабовидной туманности. Наблюдения показали, что оптическое излучение этой звезды также меняется с тем же периодом. В импульсе звезда достигает 13m, а между импульсами она не видна. Такие же пульсации у этого источника испытывает и рентгеновское излучение, мощность которого в 100 раз превышает мощность оптического излучения. Совпадение одного из пульсаров с центром такого необычного образования, как Крабовидная туманность, наводит на мысль о том, что они являются как раз теми объектами, в которые после вспышек превращаются сверхновые звезды. Если вспышки сверхновых звезд действительно завершаются образованием таких объектов, то весьма возможно, что пульсары – это нейтронные звезды, В этом случае при массе порядка 2 масс Солнца они должны иметь радиусы около 10 км. При сжатии до таких размеров плотность вещества становится выше ядерной, а вращение звезды ускоряется до нескольких десятков оборотов в секунду. По-видимому, промежуток времени между последовательными импульсами равен периоду вращения нейтронной звезды. Тогда пульсация объясняется наличием неоднородностей, своеобразных горячих пятен, на поверхности этих звезд. Здесь уместно говорить о "поверхности", так как при столь высоких плотностях вещество по своим свойствам ближе к твердому телу. Нейтронные звезды могут служить источниками энергичных частиц, все время поступающих в связанные с ними туманности, подобные Крабовидной.


фото: Радиоизлучение крабовидной туманности


В далекие древние времена люди часто обращали свой взор к звездам. Изучали этот загадочный мир философы и звездочеты, жрецы и мудрецы. Как вы думаете, откуда мы знаем так много созвездий? Еще в древности люди заметили, что звездное небо практически неизменно, а сами звезды не меняют своего блеска. Так и начали наши предки считать, что небесный мир неизменен, а наш, земной постоянно изменяется. Наверно поэтому все боги всех религий и мировоззрений обитали либо на небе либо в созвездиях. В созвездиях увековечивали могучих животных, мифических героев, царей. Но иногда появлялись «нарушители», это очень яркие звезды, которые внезапно вспыхивали, а потом, после некоторого промежутка времени исчезали. Это были новые звезды. И явление это было не столь частым. А ученые того времени называли их не настоящими. То, что в старину называли новыми звёздами, сейчас относят к одной из двух важных разновидностей переменных: новым либо сверхновым. Вплоть до XVI в. никаких других переменных звёзд ученые не знали. Существует, правда, легенда, что название звезды Персея - Алголь (араб. – «звезда дьявола») - появилось из-за якобы замеченной древними арабами (и хорошо известной сегодня) её переменности.

В 1596 г. немецкий астроном Давид Фабрициус открыл новую звезду 2-й звёздной величины в созвездии Кита. Он некоторое время следил за ней, и, как обычно, новая бесследно исчезла. Но неожиданно в 1609 г. Фабрициус опять нашёл её на небе! Так впервые была обнаружена переменная звезда, которая очень сильно меняла свой блеск: иногда становилась невидимой для невооружённого глаза, иногда вспыхивала вновь, но не пропадала навсегда. Интересно, что в промежутке между двумя открытиями Фабрициуса, в 1603 г., эту звезду наблюдал другой немецкий астроном Иоганн Байер, автор первого полного звёздного атласа неба. Он не заметил переменности, зато нанёс звезду на карту своего атласа под именем Омикрон Кита. Другое её название Мира Кита, или просто Мира (лат. «удивительная»).


Итак, переменные звезды – это звёзды, блеск которых меняется До сих пор астрономы не пришли к единому мнению, какого минимального изменения блеска достаточно для того, чтобы причислить звезду к данному классу. Поэтому в каталоги переменных звезд включают все звезды, у которых достоверно выявлены даже очень незначительные колебания блеска. Сейчас в нашей Галактике известно несколько десятков тысяч переменных звёзд (примечательно, что около 10 тыс. из них открыл один человек – немецкий астроном Куно Хофмейстер), и это число очень быстро растёт благодаря современным точным методам наблюдений. Количество переменных звёзд, обнаруженных в других галактиках, достигает десятков тысяч.
Основные типы переменных звезд

Переменные звёзды различаются массой, размерами, возрастом, причинами переменности и подразделяются на несколько больших групп. Одна из них - пульсирующие звёзды , яркость которых меняется из-за колебания размеров. К ним принадлежат звёзды типа Миры , или мириды , - красные гиганты, меняющие блеск на несколько звёздных величин с периодами в среднем от нескольких месяцев до полутора лет. Среди пульсирующих звёзд очень интересны цефеиды , названные так по имени одной из первых открытых переменных этого типа - Цефея. Цефеиды - это звёзды высокой светимости и умеренной температуры (жёлтые сверхгиганты). В ходе эволюции они приобрели особую структуру на определённой глубине возник слой, который аккумулирует энергию, приходящую из недр, а потом вновь отдает ее. Звезда периодически сжимается, разогреваясь и расширяется, охлаждаясь. Поэтому и энергия излучения то поглощается звездным газом, ионизуя его, то опять выделяется, когда при охлаждении газа ионы захватывают электроны, излучая при этом световые кванты. В результате блеск цeфеиды меняется, как правило, в несколько раз с периодом в несколько суток. Физику пульсаций цефеид впервые успешно объяснил в 50-е гг. советский ученый С. А. Жевакин.

Цефеиды играют особую роль в астрономии. В 1908 г. американский астроном Генриетта Ливитт, исследовавшая цефеиды в одной из ближайших галактик - Малом Магеллановом Облаке, обратила внимание на то, что эти звёзды оказывались тем ярче, чем продолжительнее был период изменения их блеска. Размеры Малого Магелланова Облака небольшие по сравнению с расстоянием до него, а это означает, что разница в видимой яркости отражает отличие в светимости. Благодаря найденной Ливитт зависимости период-светимость легко рассчитать расстояние до каждой цефеиды, измерив её средний блеск и период переменности. А так как сверхгиганты хорошо заметны, цефеиды можно использовать для определения расстояний даже до сравнительно далёких галактик, в которых они наблюдаются. Есть и вторая причина особой роли цефеид. В 60-е гг. советский астроном Юрий Николаевич Ефремов установил, что чем продолжительнее период цефеиды, тем моложе эта звезда. По зависимости период-возраст нетрудно определить возраст каждой цефеиды. Отбирая звёзды с максимальными периодами и изучая звёздные группировки, в которые они входят, астрономы исследуют самые молодые структуры Галактики.

Цефеиды больше других пульсирующих звёзд заслуживают названия периодических переменных. Каждый следующий цикл изменений блеска обычно весьма точно повторяет предыдущий. Однако встречаются и исключения, самое известное из них - Полярная звезда. Уже давно обнаружено, что она относится к цефеидам, хотя и меняет блеск в довольно незначительных пределах. Но в последние десятилетия эти колебания стали затухать, а к середине 90-х гг. Полярная звезда практически перестала пульсировать. Навсегда ли – покажет будущее.

Кроме цефеид и мирид есть немало других типов пульсирующих звёзд. Некоторые из них в противоположность цефеидам принадлежат к самым старым представителям звёздного населения. Так, пульсирующие переменные типа RR Лиры во множестве встречаются в шаровых звёздных скоплениях, возраст которых свыше 12 млрд. лет.

Пульсирующая звезда в определённом смысле подобна колеблющемуся пружинному маятнику: аналогом жёсткости пружины при этом является средняя плотность вещества звезды. Звёзды эволюционируют: меняются их размеры, а, следовательно, и средняя плотность. Всё это отражается на частоте колебаний «звёздной пружины». Систематически измеряя блеск пульсирующей звезды, нетрудно с высокой точностью определить период колебаний. По изменению периода можно понять, какой этап переживает звезда.

Пристальное внимание астрофизиков привлекают не только пульсирующие переменные. Так называемые взрывные (или катаклизмические ) звёзды - пример сложных процессов в двойных звёздных системах, где расстояние между компонентами ненамного превосходит их размеры. В результате взаимодействия компонентов вещество из поверхностных слоев менее плотной из звёзд начинает перетекать на другую звезду. В большинстве взрывных переменных та звезда, на которую перетекает газ – белый карлик. Если на его поверхности накапливается много вещества и резко начинаются термоядерные реакции, то наблюдается вспышка новой звезды. В видимой области спектра блеск при этом возрастает не менее чем на 6 звёздных величин, а иногда и гораздо сильнее (вспыхнувшая в 1975 г. новая V 1500 Лебедя увеличила свой блеск примерно на 19 звёздных величин!). Полная продолжительность вспышки новой - порядка года и больше.

Но и без столь бурных процессов тесная двойная система может быть интересной переменной звездой. Перетекающее вещество не сразу падает на поверхность белого карлика. Если он не обладает сильным магнитным полем, газ образует вокруг белого карлика диск. Этот диск нестабилен, вследствие чего у звезды могут отмечаться вспышки, только менее масштабные, чем у новых, и гораздо меньшей продолжительности (обычно несколько суток от возгорания до затухания). Такие переменные называют карликовыми новыми или переменными типа U близнецов . Если же у белого карлика сильное магнитное поле, вещество падает на звезду в области полюсов и характер переменности становится ещё сложнее.

При внешнем сходстве со вспышкой новой явление сверхновой звезды имеет совсем иную природу: вероятно, это один из последних этапов жизни звезды, когда она катастрофически сжимается, лишившись основных источников термоядерной энергии.

Если в двойной системе, подобной новым или карликовым новым звёздам, вместо белого карлика находится нейтронная звезда пли чёрная дыра, система тоже может наблюдаться как переменная звезда, и при этом она окажется сильным источником рентгеновского излучения. Открыв новый рентгеновский источник, астрономы нередко находят в той же области неба переменную звезду в оптическом диапазоне, а затем им удастся доказать, что именно она испускает рентгеновские лучи. Изучая белые карлики, нейтронные звёзды и чёрные дыры в системах переменных звёзд, астрофизики исследуют вещество в состояниях, которые невозможно воспроизвести в физической лаборатории.

Особая группа переменных - самые молодые звёзды, сравнительно недавно (по космическим масштабам) сформировавшиеся в областях концентрации межзвёздного газа. Такие звёзды впервые обнаружил в XIX в. русский астроном Отто Васильевич Струве в огромном комплексе вокруг туманности Ориона, поэтому их стали называть орионовыми переменными . Нередко они именуются и переменными типа Т Тельца , по одной из известных молодых переменных звёзд. Орионовы переменные часто меняют блеск беспорядочным образом, но иногда у них прослеживаются и признаки периодичности, связанной с вращением вокруг оси.

Мы знаем всего два-три десятка звёзд, принадлежащих к интересному типу R Северной Короны , характерный признак которого, образно говоря «вспышки наоборот». Звезда, давшая название этой разновидности переменных, иногда неожиданно падает в блеске на несколько (до восьми) звёздных величин, а потом медленно, в течение недель или даже месяцев, восстанавливает яркость. Атмосферы таких звёзд имеют необычный химический состав: в них практически отсутствует самый распространённый во Вселенной элемент - водород, зато много гелия и углерода. Предполагается, что углерод конденсируется в потоках вещества, истекающего с поверхности звезды, образуя сажу, которая и поглощает излучение. У некоторых звёзд типа R Северной Короны зарегистрированы также пульсации с периодами в десятки суток.

Переменные звёзды, описанные выше, меняют свой блеск вследствие сложных физических процессов в недрах или на поверхности либо в результате взаимодействия в тесных двойных системах. Это физически переменные звёзды (разумеется, здесь рассмотрены далеко не все их разновидности). Однако найдено немало звёзд, переменность которых объясняется чисто геометрическими эффектами. Известны тысячи затменных переменных звёзд в двойных системах. Их компоненты, перемещаясь по своим орбитам, временами заходят один за другой. Самая знаменитая затменная переменная звезда – Алголь. В этой системе компоненты не слишком близки между собой, поэтому их форма мало искажена взаимодействием - они почти шарообразны. Переменные, подобные Алголю, практически не меняют блеска, пока не наступит затмение. Обнаружить такую переменность непросто, ведь продолжительность затмения обычно невелика по сравнению с интервалом времени, когда блеск звезды постоянен. Но встречаются и другие затменные переменные. Их компоненты имеют форму вытянутых эллипсоидов - столь сильно притяжение каждого из них влияет на соседа. При орбитальном вращении таких тел блеск меняется непрерывно, и довольно трудно определить, в какой момент начинается затмение.

Яркость может быть непостоянной и из-за того, что на поверхности звезды имеются тёмные или светлые пятна. Вращаясь вокруг оси, звезда поворачивается к земному наблюдателю то более светлой, то более тёмной стороной. На некоторых холодных карликовых звёздах пятна подобны солнечным, но, поскольку они занимают большую часть диска, переменность при осевом вращении становится вполне заметной.

У Солнца пятна маленькие. Если наблюдать Солнце издалека, как звезду, его переменность вряд ли будет заметна. Ещё труднее обнаружить её с Земли - Солнце слишком яркое. Однако для человека Солнце - самая важная звезда, от которой зависит жизнь на нашей планете, поэтому и внимание к нему особое. Специальными исследованиями с космических аппаратов было установлено, что, действительно, при прохождении по солнечному диску крупных пятен на Землю поступает чуть-чуть меньше света. Так что Солнце вполне может считаться слабой пятнистой переменной звездой. Небольшая переменность Солнца наблюдается и с периодом, равным одиннадцатилетнему циклу солнечной активности.

Очень часто геометрическая переменность сочетается с физической. Так, многие красные карлики - пятнистые переменные и в то же время принадлежат к одному из самых распространённых типов физически переменных - вспыхивающим звёздам. Вспышки таких звёзд похожи на некоторые виды солнечных вспышек, только гораздо мощнее. Иногда во время вспышки, длящейся считанные минуты, блеск звезды возрастает на несколько звёздных величин. (Напомним, что разница в одну звёздную величину означает отличие освещённости примерно в 2,5 раза.) Представьте себе, что было бы, если бы при солнечных вспышках на Землю приходило вдвое больше света, чем обычно!

Переменными не считаются звёзды, блеск которых меняется вследствие микролинзирования или затмения малыми планетами Солнечной системы, т. е. явлений, не связанных с процессами в самой звезде.

Любительские наблюдения переменных звезд

Современные методы научных исследований очень сложны, чтобы правильно их использовать, нужна многолетняя специальная подготовка. Без неё невозможно создать новую физическую теорию или грамотно поставить эксперимент. Наука стала почти на сто процентов профессиональной. Однако в области изучения переменных звёзд и сейчас, в XXI в., существует обширное поле деятельности для любителей астрономии. Держать в поле зрения каждую из десятков тысяч переменных звёзд профессиональные астрономы пока не в состоянии. Такая возможность появится, вероятно, только после организации автоматического слежения за всем звёздным небом с оперативной обработкой информации на мощных компьютерах. Пока же астрономы-любители (многие из которых объединены в ассоциации) наблюдают множество переменных звёзд, преимущественно ярких, и сообщают астрономическим научным учреждениям ценные сведения об изменениях их блеска.

Ассоциация эффективно взаимодействует с профессиональными астрономическими учреждениями. Например, астрономы поручали её членам проследить, когда у определённой карликовой новой произойдёт вспышка, чтобы, получив сообщение об этом, немедленно начать наблюдения на больших телескопах. Неоценим вклад любителей астрономии в наблюдения переменных типа Миры Кита, которые ведутся ими на протяжении десятилетий. Результаты публикуются в изданиях Американской ассоциации наблюдателей переменных звёзд и других подобных объединений.

Нередко астрономам-любителям удаётся первыми заметить вспышки новых звёзд. Здесь наибольший успех в последнее время выпадает на долю японских наблюдателей, тоже объединённых в ассоциацию. Пользуясь электронной почтой, они поддерживают постоянную связь, помогают друг другу проверить возможные открытия, оперативно извещают профессионалов. А протестантский священник Р. Эванс из Австралии сумел запомнить облик окрестностей большого числа близких галактик, чтобы, наводя на них телескоп, проверять (даже без помощи звёздной карты), не вспыхнули ли в этих галактиках сверхновые звёзды. Так ему удалось открыть десятки сверхновых.

Любительские наблюдения переменных звёзд проводятся и в России и в Украине, где имеются свои объединения любителей (некоторые наши соотечественники участвуют и в работе Американской ассоциации наблюдателей переменных звёзд). О наиболее интересных результатах они сообщают институтам, занимающимся этими вопросами.


Переменные звёзды I Переме́нные звёзды

П. з.- звезды, видимый блеск которых подвержен колебаниям. Многие П. з. являются нестационарными звездами; переменность блеска таких звезд связана с изменением их температуры и радиуса, истечением вещества, конвективными движениями и др. Эти изменения у звезд некоторых типов являются регулярными и повторяются со строгой периодичностью. Однако нестационарность звезд не всегда вызывает их переменность; известны звезды, у которых истечение вещества, обнаруживаемое по эмиссионным линиям в спектре, не сопровождается сколько-нибудь заметными изменениями блеска. С другой стороны, переменными бывают и стационарные звезды: так, у двойных звезд периодические ослабления блеска обусловлены затмениями одного компонента другим. Правда, у тесных двойных звезд возникает также и физическая нестационарность, появляются газовые потоки и т. п., что усложняет видимую картину изменения их блеска. Вращение звезд с неоднородной поверхностной яркостью также приводит к переменности их блеска.

I. Общие сведения

П. з. являются наиболее ценными источниками сведений о физических характеристиках звезд. Кроме того, свойства П. з. позволяют использовать их для оценки расстояния до звездных систем, в состав которых они входят; они могут служить индикатором типа звездного населения таких систем. Будучи при этом легко обнаруживаемыми - и часто на очень больших расстояниях,- П. з. заслуженно пользуются особым вниманием астрономов. Количество переменных и «заподозренных» в переменности звезд нашей Галактики, включенных в каталоги, составляет около 40000 (на 1975), ежегодно число известных П. з. увеличивается в среднем на 500-1000. Около 5000 П. з. известно в других галактиках и более 2000 - в шаровых звездных скоплениях нашей Галактики. П. ч. в пределах каждого созвездия, обозначают латинскими буквами (одиночными от R до Z или комбинациями двух букв) или номерами с буквой V перед ними.

Из звезд, изменяющих свой блеск, легче всего обнаруживаются новые звезды (См. Новые звёзды). Появление на небе и исчезновение новых звезд отмечалось уже в глубокой древности. Наблюдения ярких новых звезд (точнее - сверхновых звезд (См. Сверхновые звёзды)) провели в 1572 Тихо Браге , а в 1604 И. Кеплер . Но первой П. з. меняющей свой блеск более или менее регулярно (а не «временно», подобно новым звездам), стала открытая немецким астрономом Д. Фабрициусом в 1596 звезда ο Кита (Мира); французский астроном И. Бульо в 1667 определил её период изменения блеска, оказавшийся: равным 11 месяцам. В 1669 итальянский учёный Дж. Монтанари открыл переменность блеска β Персея (Алголя). Английский астроном Дж. Гудрайк (1764-86) обнаружил строгую периодичность ослаблении блеска Алголя, открыл и исследовал переменность блеска δ Цефея, а английский астроном Э. Пиготт - η Орла. Но систематическое изучение П. з. начал Ф. Аргеландер , который в 40-х гг. 19 в. создал методику глазомерных оценок блеска П. з. В 1866 было известно уже 119 П. з. К концу 19 в. было доказано, что переменность Алголя вызывается затмениями яркого компонента более тёмным, и, таким образом, было обнаружено существование так называемых затменных П. з. Тогда же была выдвинута гипотеза (немецким астроном А. Риттер), согласно которой наблюдаемую переменность звёзд можно объяснить их пульсацией. Внедрение в исследования П. з. астрофотографии привело к открытию большого числа новых П. з. К 1915 было известно уже 1687 П. з., к 1940 - 8254. Открытая в 1912 американским астрономом Г. Ливитт зависимость период - светимость позволила Х. Шепли определить расстояние до центра Галактики, а Э. Хаббл у доказать в 1924, что туманности, подобные туманности Андромеды, являются независимыми звёздными системами, др. галактиками.

В России систематическое фотографирование и исследование П. з. начали В. К. Цераский и С. Н. Блажко в Москве (1895). Новую эпоху в исследовании П. з. открыло массовое внедрение многоцветной фотоэлектрической фотометрии с начала 50-х гг. Современные светоприёмники позволяют исследовать (при условии хорошего астроклимата) переменность блеска с амплитудой в тысячные доли звёздной величины и временным разрешением в тысячные доли секунды; при тщательных исследованиях обнаруживается, что всё возрастающее количество звёзд, считающихся обычно постоянными, оказывается микропеременным.

В 1946 Международный астрономический союз поручил обозначение новых П. з. и издание каталогов, а также разработку системы классификации Астрономическому совету АН СССР и Государственному астрономическому институту им. П. К. Штернберга (Б. В. Кукаркин, П. П. Паренаго, П. Н. Холопов и др.). С 1928 издаются сборники «Переменные звёзды ». В СССР исследования П. з. активно ведутся в астрономических учреждениях Москвы, Одессы, Крыма, Бюракана, Ленинграда, Абастумани, Душанбе, Ташкента, Казани, Шемахи. За рубежом наиболее интенсивные исследования П. з. ведут Маунт-Вилсоновская, Маунт-Паломарская, Китт-Пикская, Ликская и Гарвардские астрономические обсерватории в США.

II. Классификация переменных звёзд

П. з. делятся на два больших класса: затменные П. з. и физические П. з.

1. Затменные переменные звёзды.

Затменные П. з. представляют собой систему из двух звёзд, вращающихся вокруг общего центра масс, причём плоскость их орбит столь близка к лучу зрения земного наблюдателя, что при каждом обороте наблюдается затмение одной звезды другой, сопровождаемое ослаблением суммарного блеска системы. Расстояние между компонентами обычно сравнимо с их размерами. В нашей Галактике обнаружено свыше 4000 звёзд этого класса. У одних из них (звезды типа β Персея) блеск вне затмения практически постоянен, у других же (типа β Лиры и W Большой Медведицы) блеск изменяется непрерывно; это объясняется тем, что из-за относительно малого расстояния между компонентами форма их отлична от шаровой, они вытянуты вследствие действия приливных сил. Изменение блеска у таких систем обусловлено не только затмением, но и непрерывным изменением обращенной к наблюдателю площади светящейся поверхности звёзд; в некоторых случаях затмение вообще отсутствует. Периоды изменения блеска затменных звёзд (совпадающие с их орбитальными периодами) очень разнообразны; у звёзд типа W Большой Медведицы с почти соприкасающимися компонентами (звёздами-карликами) они меньше суток; у звёзд типа β Персея периоды достигают сотен дней, а у некоторых систем, в состав которых входят сверхгиганты (VV Цефея, ε Возничего и др.),- десятков лет.

Затменные П. з. представляют уникальную возможность определения ряда важнейших характеристик звёзд, особенно в том случае, если известны расстояние до системы и кривая изменения лучевых скоростей входящих в систему звёзд (см. Двойные звёзды). Интерес к затменным двойным звёздам резко возрос, когда некоторые из них были отождествлены с космическими источниками рентгеновского излучения. В некоторых случаях (HZ Геркулеса, или Геркулес Х-1; Центавр Х-3) затмения наблюдаются также и в рентгеновском диапазоне, причём по доплеровскому изменению периода импульсов рентгеновского излучения оказывается возможным определить элементы орбиты компонентов. Как и в случае импульсов радиоизлучения у пульсаров (См. Пульсары), эти периоды составляют немногие секунды и свидетельствуют о быстром вращении излучающего в рентгеновском диапазоне белого карлика (или нейтронной звезды (См. Нейтронные звёзды)), входящего в двойную систему. У ряда тесных двойных систем компонентом с излучением в оптическом диапазоне является сверхгигант спектрального класса В; в этих случаях не наблюдаются затмения в рентгеновском диапазоне, а иногда и в оптическом. Масса невидимого компонента в таких системах, по-видимому, превышает 3 массы Солнца и такие звёзды (особенно Лебедь Х-1 или V 1357 Лебедя), по-видимому, следует рассматривать как «чёрные дыры» (См. Чёрная дыра). Причиной рентгеновского излучения тесных двойных систем является, по всей видимости, аккреция компактным компонентом звёздного ветра или газовых струй, идущих от видимого компонента.

2. Физические переменные звёзды.

Физические П. з. изменяют свой блеск в результате происходящих в них физических процессов. Физические П. з. делятся на пульсирующие и эруптивные.

Пульсирующие переменные звёзды характеризуются плавными и непрерывными изменениями блеска; в большинстве случаев они объясняются пульсацией внешних слоев звёзд. При сжатии звезды радиус её уменьшается, она нагревается и светимость её увеличивается; при расширении звезды светимость её падает. Периоды изменения блеска пульсирующих П. з. колеблются от долей дня (звёзды типа RR Лиры, δ Щита и β Большого Пса) до десятков (цефеиды, звезда типа RV Тельца) и сотен дней (звёзды типа Миры Кита, полуправильные звёзды). Периодичность изменения блеска некоторых звёзд выдерживается с точностью хорошего часового механизма (например, некоторые цефеиды и звёзды типа RR Лиры), у других же она практически отсутствует (у красных неправильных переменных). Всего пульсирующих звёзд известно около 14 000.

Долгопериодические цефеиды - переменные звёзды-сверхгиганты с периодами от 1 до 50-200 сут, с амплитудами изменения блеска от 0,1 до 2 звёздных величии в фотографических лучах. Период и форма кривой блеска, как правило, постоянны. Кривая изменения лучевых скоростей является почти зеркальным отражением кривой блеска, максимум этой кривой практически совпадает с минимумом блеска, её минимум - с максимумом блеска. Спектральные классы в максимуме блеска F5 - F8, в минимуме F7 - K0, причём тем более поздние, чем больше период изменения блеска. С ростом периода растет и светимость цефеид.

Звёзды типа Миры Кита - долгопериодические переменные звёзды-гиганты с амплитудами более 2,5 звёздной величины (до 5-7 звёздных величин и больше), с хорошо выраженной периодичностью, с периодами, заключёнными в пределах приблизительно от 80 до 1000 сут, имеющие характерные эмиссионные спектры поздних спектральных классов (Me, Ce, Se).

Полуправильные П. з.- звёзды поздних классов (F, G, К, М, С, S), субгиганты, гиганты или сверхгиганты, обладающие заметной периодичностью, сопровождаемой различными неправильностями в изменении блеска. Периоды полуправильных П. з. заключены в очень широких пределах - приблизительно от 20 до 1000 сут и больше. Формы кривых изменения блеска весьма разнообразны, амплитуда обычно не превышает 1-2 звёздных величин.

П. з. типа RR Лиры (короткопериодические цефеиды, или звёзды типа П. з. в шаровых скоплениях) - пульсирующие гиганты, обладающие особенностями цефеид, с периодами изменения блеска, заключёнными в пределах от 0,05 до 1,2 сут, спектральными классами А и F и амплитудами до 1-2 звёздных величин. Известны случаи переменности как формы кривой блеска, так и периода. В ряде случаев эти изменения периодичны (эффект Блажко).

П. з. типа δ Щита - субгиганты спектральных классов А и F, пульсирующие с периодом в немногие часы и амплитудой в несколько сотых или десятых долей звёздной величины.

П. з. типа RV Тельца - звёзды-сверхгиганты со сравнительно стойкой периодичностью изменений блеска, с общей амплитудой до 3 звёздных величин; кривая блеска состоит из двойных волн с чередующимися главными и вторичными минимумами, периоды заключены в пределах от 30 до 150 сут; спектральные классы от G до поздних К (изредка появляются полосы окиси титана, характерные для спектров класса М).

П. з. типа β Цефея, или, как их часто называют, звёзды типа β Большого Пса,- однородная группа пульсирующих звёзд-гигантов, блеск которых меняется в пределах около 0,1 звёздной величины, периоды заключены в пределах от 0,1 до 0,6 сут, спектральные классы B0 - B3. В отличие от цефеид, максимум блеска у них соответствует фазе минимального радиуса звезды.

Эруптивные переменные звёзды характеризуются неправильными, часто быстрыми и большими изменениями блеска, вызванными процессами, носящими взрывообразный (эруптивный) характер. Эти звёзды делят на две группы: а) молодые, недавно сформировавшиеся звёзды, к которым относят быстрые неправильные (так называемые орионовы) П, з., неправильные П. з. типа Т Тельца, вспыхивающие звёзды типа UV Кита и родственные им объекты, многочисленные в очень молодых звёздных скоплениях и часто связанные с диффузным веществом; б) звёзды, обычно почти постоянные, но время от времени показывающие быстрые и большие увеличения яркости; это - новые и сверхновые звёзды, повторные новые, звёзды типа U Близнецов, новоподобные и симбиотические переменные (для последних характерно присутствие в спектре линий, типичных как для горячих, так и для холодных звёзд). Во многих случаях (если не всегда) звёзды этой группы оказываются двойными системами. Эруптивных звёзд известно более 1600.

Орионовы П. з.- неправильные П. з., связанные с диффузными туманностями или наблюдаемые в районах таких туманностей. К этой же группе П. з. относятся и быстрые неправильные П. з., видимым образом не связанные с диффузными туманностями и обнаруживающие изменения блеска на 0,5-1,0 звёздной величины в течение нескольких часов или суток. Эти звёзды иногда относят к особому классу П. з. типа RW Возничего; однако резкой границы между ними и орионовыми П. з. не существует.

П. з. типа Т Тельца - неправильные П. з., в спектре которых имеются следующие спектральные признаки: спектральные классы заключены в пределах F - М; спектр наиболее типичных звёзд напоминает спектр солнечной хромосферы; наблюдаются аномально интенсивные флюоресцентные эмиссионные линии FI с длинами волн 4046 Å, 4132 Å. Эти П. з. наблюдаются обычно только в диффузных туманностях.

П. з. типа UV Кита - звёзды, иногда испытывающие вспышки с амплитудой от 1 до 6 звёздных величин. Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через несколько минут или десятков минут. Встречаются как в звёздных скоплениях, так и в окрестностях Солнца.

Новые звёзды - это горячие карлики, за несколько дней увеличивающие блеск на 7-15 звёздных величин, а затем в течение нескольких месяцев или лет возвращающиеся к блеску, который они имели до начала вспышки. Спектральные данные показывают, что у звезды возникает расширяющаяся оболочка, постепенно рассеивающаяся в пространстве. У повторных новых звёзд вспышки повторяются через несколько десятков лет; возможно, что через сотни или тысячи лет повторяются и вспышки типичных новых звёзд, амплитуды изменения блеска которых обычно гораздо больше.

П. з. типа U Близнецов - звёзды, у которых обычно наблюдаются небольшие быстрые флуктуации блеска. При среднем цикле в несколько десятков или сотен дней у звёзд этого типа наблюдаются увеличения блеска на 2-6 звёздных величин, причём тем большие, чем реже вспышки происходят. Подобно новым звёздам, звёзды этого типа, являются тесными двойными системами, их вспышки так или иначе связаны с обменом вещества между компонентами, находящимися на разных стадиях эволюции.

В отдельную группу могут быть выделены звёзды, переменность блеска которых обусловлена неоднородной поверхностной яркостью, вследствие чего при вращении блеск их изменяется. К этой группе относятся прежде всего звёзды типа BV Дракона, которые, подобно П. з. типа UV Кита, обнаруживают молниеносные вспышки, но обладают также и небольшими периодическими изменениями блеска. По-видимому, к этой же группе П. з. относятся и Магнитные звёзды или П. з. типа α 2 Гончих Псов. Это звёзды спектрального класса А, в спектре которых наблюдаются аномально усиленные линии кремния, стронция, хрома и редкоземельных элементов, изменяющие интенсивность с тем же периодом, что и блеск и магнитное поле, всегда наблюдающееся у звёзд этого типа. Амплитуда обычно не превышает 0,1 звёздной величины, а периоды заключены в интервале 1-25 сут. Переменность объясняется, по-видимому, тем, что области, отличающиеся по температуре и химическому составу, располагаются на поверхности звезды симметрично относительно магнитной оси, наклонной к оси вращения (гипотеза «наклонного ротатора»).

Сверхновые звёзды не наблюдались в нашей Галактике со времён Тихо Браге и Кеплера, но в других галактиках их открывают ежегодно до 20; всего же их известно к 1975 свыше 400. Вспышка сверхновой - наиболее грандиозное явление в мире звёзд; в максимуме блеска сверхновая звезда, вспыхнувшая в той или иной галактике, иногда достигает совокупной яркости всех остальных звёзд этой галактики. Вспышки сверхновых звёзд связывают с началом коллапса звезды после истощения источников ядерной энергии (см. Коллапс гравитационный). После вспышки сверхновая звезда превращается в пульсар - нейтронную звезду, вращающуюся с периодом в немногие секунды и доли секунды; узконаправленное электромагнитное излучение, выходящее из магнитных полюсов пульсара, не совпадающих с полюсами оси вращения, обусловливает наблюдаемое импульсное излучение пульсара. Пока известен лишь один пульсар, отождествленный с наблюдаемым в видимых лучах небесным объектом,- СМ Тельца. Это - результат вспышки сверхновой звезды 1054 г., приведший также к образованию Крабовидной туманности.

III. Теоретические исследования переменных звёзд

Причины изменений блеска физических П. з. и место, занимаемое этими звёздами в звёздной эволюции, составляют тесно связанный круг проблем. По-видимому, переменность характерна для звёзд на определённых этапах их эволюции. Особое значение для понимания природы переменности имеет изучение П. з. в звёздных скоплениях (для звёзд, входящих в скопления, можно определить и возраст, и эволюционную стадию), а также анализ положения П. з. разных типов на диаграмме «спектр - светимость» (см. Герцшпрунга - Ресселла диаграмма).

Скопления, содержащие быстрые неправильные П. з., очень молоды (их возраст 10 6 -10 7 лет). В этих скоплениях лишь наиболее массивные звёзды, обладающие значительной светимостью, достигли главной последовательности на диаграмме Герцшпрунга - Ресселла, занимают её верхнюю часть и являются обычными стационарными звёздами. У звёзд меньшей светимости и массы ещё не закончилось гравитационное сжатие, сохранилась обширная конвективная зона, в которой происходят неправильные бурные движения газа, с этим, по-видимому, и связана переменность блеска и спектра молодых звёзд.

Ряд типов пульсирующих П. з. расположен на диаграмме Герцшпрунга - Ресселла в пределах полосы нестабильности, пересекающей диаграмму от красных сверхгигантов спектрального класса К до белых звёзд-карликов класса А. К их числу принадлежат цефеиды, звёзды типа RV Тельца, RR Лиры и δ Щита. Во всех этих звёздах действует, по-видимому, единый механизм переменности, вызывающий пульсацию их верхних слоев. Звёзды, соседствующие на диаграмме Герцшпрунга - Ресселла, обладают схожими характеристиками переменности (например, цефеиды плоской и сферической составляющей), но их эволюционная история, массы, внутреннее строение резко отличаются.

Изучение пространственно-кинематических характеристик П. з. было одним из главных факторов, приведших в 40-х гг. 20 в. к разработке концепции составляющих Галактики и звёздных населений (см. Галактика).

Лит.: Общий каталог переменных звезд, 3 изд., т. 1-3, М., 1969-71; Пульсирующие звезды, М., 1970; Эруптивные звезды, М., 1970; Затменные переменные звезды, М., 1971; Методы исследования переменных звезд, М., 1971.

Ю. Н. Ефремов.

II Переме́нные звёзды («Переме́нные звёзды»,)

сборники статей, издаваемые Астрономическим советом АН СССР. Основан в 1928 Нижегородским кружком любителей физики и астрономии. С 1946 издаются в Москве (до 1971 как Бюллетень). В сборниках публикуются результаты исследований переменных звёзд, квазаров, рентгеновских источников и др. космических объектов, показывающих явления нестационарности, а также связанные с этими объектами методические и теоретические работы. К началу 1975 вышли 141 номер и 6 приложений к ним.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Переменные звезды - это звезды, меняющие блеск на глазах людей и их поколений. Эволюционные изменения блеска подавляющего большинства звезд, как правило, слишком незначительны и происходят слишком медленно, чтобы быть замеченными за какой-нибудь четырех-трехтысячелетний период исторического развития человечества Однако "звезды-гостьи" древних китайцев, звезда дьявола (Алголь) древних арабов, Удивительная (Мира) в созвездии Кита, поразившая воображение астрономов конца эпохи Возрождения, сверхновые Тихо Браге и Кеплера уже давно разнообразием своего поведения свидетельствовали о разнообразии причин, вызывающих изменения их блеска И уже давно астрономы занимаются классификацией переменных звезд стремясь вместить в краткий символ того или иного типа переменности блеска все многообразие физических характеристик и причин изменения блеска данной конкретной звезды.

С течением времени проблемы, связанные с классификацией переменных звезд, становятся все сложнее. Постепенно выясняется взаимосвязь различных типов переменности блеска. Нередко возникает необходимость отнесения одного и того же объекта сразу к нескольким типам переменности, поскольку они определяются разными физическими причинами.

Повышение точности наблюдений и совершенствование методов их анализа привели к обнаружению множества микропеременных звезд и выяснению закономерностей изменения их фотометрических и спектральных характеристик. В настоящее время ясно, что не существует нижнего предела амплитуды изменений блеска переменных, подлежащих регистрации; все дело в надежности регистрации таких изменений в их достоверности.

Переменность в далеком ультрафиолетовом и рентгеновском излучении, в далеком инфракрасном и радиодиапазоне оказывается характерным свойством переменных звезд разных типов. Лишь трудности отождествления объектов, наблюдаемых в этих областях спектра, с оптическими объектами накладывают пока ограничения на включение их в каталоги переменных звезд.

В связи с подготовкой к новому (четвертому) изданию Общего каталога переменных звезд мы столкнулись с необходимостью существенного уточнения классификации переменных, принятой в третьем издании каталога (Кукаркин и др., 1969) и трех дополнениях к нему. Так, например, обнаружение хромосферной активности ряда звезд требует отражения этого явления в классификации. Своеобразны проявления оптической переменности источников рентгеновского излучения. Нуждается в совершенствовании классификация затменно-двойных систем и т. п.

Ниже будет изложена представляющаяся нам наиболее рациональной система классификации переменных звезд, основанная на развитии общепринятых принципов классификации этих объектов и на анализе предложений, сделанных рядом специалистов.

Исходя из основных причин, определяющих наблюдаемую с Земли переменность блеска тех или иных объектов, принято делить переменные на следующие классы: эруптивные, пульсирующие и затменно-двойные. В настоящее время необходимо ввести еще один класс - вращающиеся переменные (Ефремов, 1975; Перси, 1978). При этом подразумевается, что поверхность таких звезд может быть покрыта пятнами-участками с пониженной или повышенной поверхностной яркостью, и при несовпадении оси вращения звезды с направлением к наблюдателю средняя поверхностная яркость ее полусферы, обращенной к Земле, может меняться вследствие вращения звезды,

Представляется также целесообразным выделить из класса эруптивных переменных в отдельный класс взрывные переменные -сверхновые и Новые звезды.

Каждый из этих классов объединяет объекты совершенно различной природы, относящиеся к разным типам переменности блеска. В то же время одни и те же объекты одновременно могут быть и пульсирующими и эруптивными и входить в состав затменно-двойных систем, т.е. менять блеск почти по всем возможным причинам или любым комбинациям последних.

2.

Для того чтобы разобраться в различных типах переменных звезд, целесообразно рассмотреть их положение на диаграмме M V , B-V, причем раздельно в зависимости от возраста (t) самих переменных (см., рис.1). Прерывистой линией всюду на рис. 1 нанесено положение начальной главной последовательности. Области, занимаемые переменными разных типов, обведены сплошными линиями. Они указаны схематически. Границы их не следует принимать слишком серьезно. Они могут перекрываться и занимать гораздо большие площади. Не следует также слишком строго воспринимать возрастные характеристики переменных, отмеченные на рис. 1а, 1b и 1с.

Рис. 1.

На рис. 1а показано положение самых молодых переменных звезд (0<t <10 7 лет). Среди них встречаются как эруптивные (орионовы переменные Ina , Inb , InT , переменные типов S Dor и FU Ori , вспыхивающие переменные типа UV Кита , связанные с туманностями), так и пульсирующие переменные (неправильные Lc и полуправильные SRc сверхгиганты поздних спектральных классов). Все эти объекты наблюдаются в самых молодых и возникающих звездных скоплениях, в ОВ- и Т-ассоциациях. Некоторые типы (FU Ori , S Dor ) характеризуют, по-видимому, кратковременные этапы развития орионовых переменных. Рассмотрим эти типы более подробно. Приводимые ниже сокращенные обозначения типов не следует неосмотрительно менять, во избежание путаницы в дальнейшем, в связи с большим числом уже выделенных типов.

S Dor - эруптивные звезды высокой светимости спектральных классов Bpeq-Fpeq, показывающие неправильные (иногда циклические) изменения блеска в пределах от 1 до 3 m . Это одни из самых ярких голубых звезд галактики, в которой они наблюдаются. К переменным этого типа относятся Р Cyg и Car.

In - орионовы переменные. Неправильные эруптивные переменные, связанные с диффузными туманностями и расположенные на диаграмме M V , B-V в районе главной последовательности и в области субгигантов. На рис. 1а показана область, занимаемая ими в минимуме блеска. В результате дальнейшей эволюции эти звезды превращаются в звезды главной последовательности постоянного блеска. Пределы изменения блеска могут достигать нескольких величин. Делятся на подтипы:

Ina - орионовы переменные спектральных классов В-А (Т Ori).

Inb - орионовы переменные спектральных классов F-M или Fe-Me (АН Ori).

InT - орионовы переменные типа Т Тельца. Спектральные классы Fe-Me. Специфический признак типа - флюоресцентные эмиссионные линии Fe I 4046, 4132 (аномально интенсивные у этих звезд), эмиссионные линии , и линия поглощения Li I 6707. Если связь с туманностью незаметна, буква n в символе типа может быть опущена.

В спектрах некоторых орионовых переменных (YY Ori) наблюдается "обратный Р Cyg эффект", - наличие темных компонент с длинноволновой стороны эмиссионных линий, - свидетельствующий о падении вещества на поверхность этих звезд. В этом случае символ типа может сопровождаться символом YY.

UVn -связанные с диффузными туманностями вспыхивающие эруптивные переменные, подобные переменным типа UV Кита (см, ниже). Это разновидность орионовых переменных подтипа Inb , на неправильные изменения блеска которых накладываются вспышки.

FU - эруптивные новоподобные переменные типа FU Ori спектральных классов Ae-Fpe, связанные с диффузными туманностями; показывают длящееся несколько месяцев постепенное возрастание блеска на 6 m , после чего наступает почти полное постоянство блеска в максимуме, сохраняющееся на протяжении десятилетий, и постепенное развитие эмиссий в спектре. Область, занимаемая этими переменными на рис. 1а, соответствует максимуму их блеска.

Lc - неправильные медленные пульсирующие переменные сверхгиганты спектрального класса M (TZ Cas) с амплитудой порядка 1 m .

SRc - полуправильные пульсирующие переменные сверхгиганты спектрального класса М ( Сер). Амплитуды-порядка 1 m , периоды изменения блеска - от 30 до нескольких тысяч дней.

В связи с рис. 1а следует рассмотреть еще две категории объектов, а именно: сверхновые и пульсары.

Сверхновые (SN) - звезды, в результате взрыва быстро увеличивающие свой блеск на 20 и более величин, а затем медленно ослабевающие. Спектр при вспышке характеризуется наличием очень широких эмиссионных полос. В результате взрыва структура звезды полностью меняется. На месте сверхновой остается расширяющаяся эмиссионная туманность и (не всегда наблюдаемая) быстро вращающаяся нейтронная звезда с сильным магнитным полем, излучающая в радио, оптическом и рентгеновском диапазонах длин волн, - пульсар (PSR), период изменения блеска которого (от нескольких сотых секунды до нескольких секунд) равен периоду его вращения.

3.

На рис. 1b показано положение переменных звезд, возраст которых заключен в пределах от 10 7 до 10 9 лет.

В процессе эволюционного отклонения от начальной главной последовательности звезды спектральных классов B- F начинают проявлять переменность блеска. В основном, эти явления вызываются радиальной и нерадиальной пульсацией близких к поверхности слоев звезды, вращением звезд с пятнами, а также процессами образования и исчезновения эмиссионных экваториальных колец или дисков у быстро вращающихся В-звезд. При радиальных пульсациях форма звезды остается сферической, происходит периодическое расширение и сжатие поверхности звезды. В случае нерадиальных пульсаций форма звез. ды периодически отклоняется от сферической, причем даже соседние участки ее поверхности могут находиться в противоположных фазах колебаний.

В настоящее время можно выделить следующие типы переменности звезд этих спектральных классов.

Cyg - нерадиально пульсирующие сверхгиганты спектральных классов Beq-Aeq Ia, изменения блеска которых с амплитудой порядка 0. m 1 нередко кажутся неправильными, ибо вызываются наложением многих колебаний с близкими периодами. Наблюдаются циклы от не. скольких дней до нескольких десятков дней. Возможно, эти переменные являются последующей стадией развития звезд типа S Dor.

Сер - пульсирующие переменные спектральных классов O8-В6 I-V с периодами изменения блеска и лучевых скоростей, заключенными в пределах 0. d 1-0. d 6, и пределами изменения блеска от 0. m 01 до 0. m 3. Максимум блеска соответствует минимальному радиусу звезды. В основном, у этих звезд наблюдаются радиальные пульсации, однако сейчас многие исследователи находят возможным выделять среди них переменные, подобные 53 Per (V469 Per), характеризующиеся нерадиальными пульсациями (см., например, Унно и др., 1979).

К переменным типа Сер примыкает выделенная Джакате (1979) группа переменных, которые можно назвать переменными типа Cen. Это звезды спектральных классов В2-ВЗ IV-V, периоды и амплитуды изменения блеска которых на порядок меньше по сравнению с наблюдаемыми у звезд типа Сер, т.е. заключены в пределах 0. d 02-0. d 04 и 0. m 15-0. m 025 соответственно.

Следующим хорошо известным типом пульсирующих переменных главной последовательности является тип Sct. Обычно к нему относят звезды спектральных классов A2-F5 III- V с амплитудами изменения блеска от 0. m 003 (в основном 0. m 02) до 0. d 8 и периодами от 0. d 02 до 0. d 4. Форма кривых блеска сильно меняется. Наблюдаются как радиальные, так и нерадиальные пульсации; могут наступать и кратковременные прекращения изменений блеска. Кривая изменения лучевых скоростей является почти зеркальным отображением кривой измененения блеска, причем максимум скорости приближения к наблюдателю практически совпадает с максимумом блеска звезды.

В начале пятидесятых годов Струве (1955) выдвинул гипотезу о существовании гипотетической последовательности Майя, заполняющей пробел между пульсирующими переменными типов Сер и Sct. Струве проводил эту последовательность между двумя звездами - членом скопления Плеяды Майей (B7III) и UMi (A3II-III). До сих пор различные исследователи (см., например, Бердсли, Жижка, 1977; Брегер, 1979) продолжают возвращаться к обсуждению этого вопроса.

Переменность блеска Майи еще не доказана. Нам представляется, что последовательности Майя вообще не существует. По выражению Брегер а (1979), в море звезд с малоамплитудной нерадиальной пульсацией звезды типов Сер и Sct образуют два острова переменных с большой амплитудой, поддерживаемой дополнительным возбуждением радиальных пульсаций.

В связи с этим уместно остановиться на вопросе о переменности блеска Lyr (AOV), до недавнего времени использовавшейся в качестве одного из основных фотометрических и спектрофотометрических стандартов. О переменности блеска этой звезды, открытой еще Гутником и Прагером (1915) и подтвержденной Фэзом (1935), вспомнили лишь недавно после появления статьи Вишневского и Джонсона (1979). Звезда не включалась в каталоги переменных звезд, потому что многие наблюдатели находили ее постоянной. Однако еще Гутник (1930), сопоставив фотоэлектрические наблюдения Lyr 1915 г. с наблюдениями ее лучевой скорости, выполненными в 1929 г., показал, что обнаруженные изменения блеска синхронны с изменениями лучевой скорости, происходящими с периодом близким к 0. d 07, причем максимумы блеска звезды совпадают с минимумами ее лучевой скорости. Фэз (1935) и Нейбауэр(1935) провели одновременные (с точностью до минуты) наблюдения блеска и лучевой скорости Lyr, подтвердив выводы Гутника (см. рис.2). Только что Джонсон (1980) сообщил о переменности блеска Lyr на основании своих фотоэлектрических наблюдений, проводившихся им с 1950 г. на протяжении 30 лет.


Рис. 2.

Фазовые соотношения блеска и лучевой скорости Lyr во время их изменений таковы же, как и у звезд типа Sct, амплитуда и период также укладываются в соответствующие пределы. На диаграмме с 1 , b-y, воспроизведенной нами на рис.3 из работы Кубяка (1979), Lyr располагается вне основной области, занятой переменными типа Cep и Sct (точки). Однако недалеко от нее расположена и Ser - переменная этого типа. Таким образом, можно думать, что Lyr (A0V), равно как и UMi (A3II-III) и CrB (A0IV) можно отнести к переменным типа Sct, принимая в качестве интервала спектральных классов, присущих последним, интервал А0-F5III-V.

Очевидно, у звезд, находящихся на краю полосы нестабильности, занятой переменными типа Sct, стабильность пульсаций нарушается. У некоторых звезд они могут возникать и исчезать. Переменность блеска наступает спорадически и иногда полностью прекращается.

Следующей за пульсациями причиной изменения блеска звезд, находящихся в районе главной последовательности, является вращение звезд с неоднородной поверхностной яркостью. Эта неоднородность может быть вызвана или наличием пятен или вообще температурной и химической неоднородностью звездной атмосферы под действием магнитного поля, ось которого не совпадает с осью вращения звезды.

Вращением по отношению к земному наблюдателю обусловлена переменность звезд типа CVn - пекулярных звезд главной последовательности спектральных классов В8р-А7р с сильными переменными магнитными полями. В их спектрах аномально усилены линии кремния, марганца, стронция, хрома и редкоземельных элементов, меняющие интенсивность с периодом, равным периоду изменения магнитного поля и блеска (0. d 5-160 d). Амплитуды изменения блеска обычно заключены в пределах 0. m 01-0. m 1.

Звезды спектральных классов В0р-В7р с переменной интенсивностью линий He I, Si III и некоторых линий металлов (SX Ari, Ori E = V1030 Ori) иногда называют гелиевыми переменными. Мы будем называть их переменными типа SX Ari. Эти звезды, обладающие также и переменными магнитными полями, являются высокотемпературными аналогами переменных типа CVn. Их можно было бы объединить в один тип с переменными типа ( CVn, так как причина переменности блеска и спектра (вращение звезды) у переменных звезд обоих типов одинакова.


Рис. 3.

У некоторых переменных типа CVa (например, UU Com, спектрального класса A3pV) обнаружены и короткопериодические пульсации с периодами 0. d 02-0. d 1 и амплитудой порядка 0. m 01, свидетельствующие о том, что одновременно эти звезды могут быть и переменными типа Sct.

К вращающимся переменным относятся и переменные типа BY Dra -эмиссионные звезды - карлики спектральных классов dKe-dMe, показывающие квазипериодические изменения блеска с периодами от долей дня до 120 и амплитудами от нескольких сотых до 0. m 5. Переменность блеска в этом случае вызывается, по-видимому, осевым вращением звезд с изменяющейся с течением времени степенью неоднородности поверхностной яркости (пятнами) и хромосферной активностью. У некоторых из них наблюдаются также вспышки, подобные вспышкам звезд типа UV Кита (см. ниже), и в таком случае их можно относить также к последнему типу, считая одновременно и эруптивными.

Переменные типа UV Cet - эруптивные звезды спектральных классов dKe-dMe, иногда испытывающие вспышки с амплитудой от нескольких десятых до 6 m . Максимум блеска достигается через секунды или десятки секунд после начала вспышки, к нормальному блеску звезда возвращается через несколько минут или десятков минут.

На рис.1b показана область, занимаемая этими переменными в минимуме блеска. Верхняя левая граница области соответствует переменным, наблюдаемым в скоплении Плеяды (t=5 . 10 7 лет). С течением времени эта граница смещается вправо, к более поздним спектральным классам; в скоплении Гиады (t=5 . 10 8 лет) она проходит уже в районе М V =+10 m , B-V=+1. m 6.

По-видимому, не случайно наше Солнце (кружок с точкой на рис.1b, с) расположено в самой спокойной области диаграммы (М V , В-V) - рядом с ним в районе главной последовательности нет одиночных физических переменных звезд, иначе мы чувствовали бы себя не очень уютно.

Процесс ухода с главной последовательности сопровождается у быстро вращающихся В-звезд истечением вещества в их экваториальной зоне и образованием экваториальных колец или дисков, что приводит к превращению их в эмиссионные неправильные переменные типа Cas спектрального класса BeIII-V, относящиеся к классу эруптивных. Амплитуды изменения их блеска могут достигать 1. m 5.

Уйдя с главной последовательности. В-звезды проходят область нестабильности цефеид, превращаясь в радиально пульсирующие переменные типа Сер. Это цефеиды плоской составляющей Галактики, подчиняющиеся известной зависимости период-светимость. Спектральные классы их в максимуме блеска F5-F8, в минимуме G-K, причем

тем более поздние, чем больше периоды изменения блеска, заключающиеся в пределах от 1 d до 135 d . Амплитуды изменения блеска-от (0. m 1 до 2 m . Как и у звезд типа Sct, максимум блеска совпадает с максимумом скорости приближения поверхностных слоев звезды к наблюдателю.

С этими звездами могут быть связаны полуправильные переменные гиганты и сверхгиганты спектральных классов F-K, иногда эмиссионные, которые принято обозначать символом SRd (SX Her, SV UMa). Амплитуды изменения их блеска заключены в пределах от 0. m 01 до 4 m , периоды-от 30 d до 1100 d .

В процессе дальнейшей эволюции переменные высокой светимости попадают в область красных сверхгигантов, превращаясь в уже описанные переменные типов Lc и SRc, а переменные меньшей светимости (но ярче М V =+1 m) превращаются в неправильные (Lb) и полуправильные (SRab) переменные поздних спектральных классов с амплитудами порядка 1 m .

Lb - медленно меняющиеся неправильные переменные спектральных классов К, М, С, S, как правило, гиганты (СО Cyg).

SRa - полуправильные гиганты поздних спектральных классов (М, С, S) с хорошо выраженной периодичностью и, как правило, небольшими (меньше 2. m 5) амплитудами изменения блеска. Периоды заключены в пределах от 35 до 1200 d . Амплитуды и формы кривых изменения блеска обычно меняются.

SRb - полуправильные гиганты поздних спектральных классов (М, С, SV с плохо выраженной периодичностью (средний цикл-от 20 d до 2300 d) или со сменой периодических изменений медленными неправильными колебаниями или даже интервалами постоянства блеска.

4.

На рис. 1с показано положение переменных звезд, возраст которых превышает 10 9 лет. Сплошными кривыми намечены основные последовательности старых скоплений-рассеянного (NGC 188) с нормальным содержанием тяжелых элементов и шарового (М15) с пониженным содержанием тяжелых элементов.

На этой стадии эволюции все звезды, расположенные на диаграмме M V , B-V в области с M V ярче +3 m , являются мало массивными объектами с массой меньшей 1.3 массы Солнца. Особенности переменности блеска многих из них связаны с расширением внешних слоев и сбрасыванием оболочек, т.е. с потерей массы. В этом случае в концах ветвей красных гигантов старых рассеянных и шаровых скоплений, по-видимому, появляются переменные типов SRab, Lb и Миры Кита (М), характерные как для старой составляющей диска, так и для сферической составляющей Галактики.

М - переменные типа Миры Кита, радиально пульсирующие долгопериодические переменные с характерными эмиссионными спектрами поздних классов (Me, Ce, Se), с амплитудами изменения блеска, превышающими 2. m 5 (до 5-6 m), с хорошо выраженной периодичностью и периодами, заключенными в пределах от 80 до 1000 d . На рис. 1с показана область, занятая переменными типа Миры Кита спектральных классов Me в максимуме их блеска.

В мало массивных старых рассеянных скоплениях переменные этого типа практически не наблюдаются, по-видимому, в связи с кратковременностью стадии такой переменности и потому, что эти скопления успевают распасться, прежде чем их члены начинают становиться звездами типа Миры Кита. Поэтому переменные типа Миры Кита, в основном, встречаются лишь в галактическом поле и в массивных старых шаровых скоплениях.

Звезды очень старых шаровых скоплений, попадающие после гелиевой вспышки в пробел Шварцшильда на горизонтальной ветви, становятся переменными типа RR Лиры.

RR - переменные типа RR Лиры, радиально пульсирующие гиганты спектральных классов A-F с периодами, заключенными в пределах от 0. d 2 до 1. d 2, и амплитудами изменения блеска, не превышающими 2 m . По форме кривой блеска и величине периода их принято делить на подтипы RRab и RRc.

RRab - переменные с резко асимметричной кривой блеска (крутой восходящей ветвью) и периодами от 0. d 4 до 1. d 2 (RR Lyr).

RRc - переменные с почти симметричными, часто синусоидальными, кривыми блеска и средним периодом около 0. d 3 (TVBoo).

В ходе дальнейшей эволюции звезд горизонтальной ветви по направлению к асимптотической ветви и вдоль нее возникают радиально пульсирующие переменные типов BL Her, W Vir и RV Tau.

BLH - переменные типа BL Her, пульсирующие переменные сферической составляющей или старой составляющей диска с периодами от 1 до 8 . Характеризуются наличием горба на нисходящей ветви кривой блеска.

CW - переменные типа W Vir, пульсирующие переменные сферической составляющей или старой составляющей диска с периодами от 12 до 35 d . Характеризуются зависимостью период-светимость, отличающейся от аналогичной зависимости для переменных типа Сер. Кривые блеска также отличаются от кривых блеска переменных типа Сер соответствующих периодов наличием горбов на нисходящей ветви.

По традиции переменные типов Сер, W Vir и BL Her нередко называют цефеидами (а переменные типа RR Лиры - короткопериодическими цефеидами), так как часто по виду кривой блеска невозможно отличить переменные этих типов друг от друга, хотя в принципе это совершенно разные объекты, находящиеся на различных этапах эволюции.

RV - переменные типа RV Таи, сверхгиганты спектральных классов F-G в максимуме блеска; кривые блеска характеризуются наличием двойных волн с чередующимися главными и вторичными минимумами, глубина которых может меняться так, что главные минимумы могут превращаться во вторичные и наоборот; общая амплитуда изменения блеска может достигать 3-4 m ; периоды между двумя соседними главными минимумами, называемые формальными, заключены в пределах от 30 до 150 d . Делятся на подтипы RVa и RVb.

RVa - переменные типа RV Таи, средняя величина которых не меняется (AC Her).

RVb - переменные типа RV Tau, у которых наблюдается периодическое изменение средней величины с периодом от 600 d до 1500 d (DF Cyg).

В том же районе диаграммы M V , B-V на рис. 1с расположены переменные типа R СгВ - бедные водородом, босатые углеродом и гелием звезды высокой светимости спектральных классов Bpe-R, одновременно являющиеся эруптивными и пульсирующими. Характеризуются медленными непериодическими ослаблениями блеска с амплитудой от 1 до 9 m , продолжающимися от нескольких десятков до сотен дней. На эти изменения накладываются циклические пульсации с амплитудой в несколько десятых звездной величины и периодами от 30 до 100 d (Фист, 1975; Жиляев и др., 1978).

К переменным типа R СгВ примыкают (возможно, связанные с ними

эволюционно) переменные типа PV Tel - гелиевые сверхгиганты спектральных классов Вр, характеризующиеся слабыми линиями водорода, усиленными линиями гелия и углерода, пульсирующие с периодами от 0. d 1 до 1 или меняющие блеск на протяжении интервалов времени порядка года. Амплитуда изменения их блеска-порядка 0. m 1.

Столь же высокой светимостью и еще более высокой температурой поверхности характеризуются звезды, которые можно назвать эруптивными переменными типа WR. Это или одиночные звезды типа Воль. фа-Райе (если такие существуют) или, во всяком случае, не являющиеся затменными двойные системы, в состав которых входят компоненты типа Вольфа-Райе, характеризующиеся неправильными изменениями блеска порядка 0. m 1, вызванными, по-видимому, физическими причинами, в частности, нестационарностью истечения вещества с поверхности этих звезд.

Здесь же расположены ядра планетарных туманностей (PN), показывающие (подобно V605 Aql) огромные монотонные изменения блеска до 10 m , которые мы пока не выделяем в особый тип переменности, предпочитая относить к уникальным объектам.

На рис. 1с представлены еще два типа пульсирующих переменных: SX Phe и ZZ Cet.

Переменные типа SX Phe - сходные с переменными типа Sct пульсирующие субкарлики сферической составляющей или старой составляющей диска спектральных классов A2-F5; у этих объктов одновременно наблюдается несколько периодов колебаний от 0. d 04 до 0. d 06 (нерадиальные пульсации) с переменной амплитудой изменений блеска, которая может достигать 0. m 7.

ZZ - переменные типа ZZ Cet, пульсирующие белые карлики, меняющие блеск с периодами от 30 секунд до 25 минут и амплитудами от 0. m 001 до 0. d 2. Иногда наблюдаются вспышки на 0 m , могущие, правда, объясняться наличием тесного компонента типа UV Cet. Пульсации нерадиальные, у звезды обычно наблюдается несколько близких периодов.

5.

До сих пор мы рассматривали, в основном, одиночные переменные звезды, эволюционирующие нормально в результате действия собственных источников энергии и изменения внутренней структуры и химического состава, хотя, несомненно, некоторые из них могут быть компонентами двойных систем.

Перейдем теперь к рассмотрению типов переменности, ассоциированных с тесными двойными системами, т.е. системами, компоненты которых оказывают сильнейшее взаимное влияние на эволюцию друг друга. В этом случае в первую очередь необходимо остановиться на классификации затменно-двойных систем.

Общепринятая классификация затменно-двойных систем по форме кривых изменения их блеска хорошо известна. По этой классификации затменно-двойные со сферическими или слегка эллипсоидальными компонентами, обладающие кривыми блеска, позволяющими фиксировать моменты начала и конца затмений, относятся к переменным типа Алголя (ЕА). Затменно-двойные с эллипсоидальными компонентами и кривыми блеска, не позволяющими фиксировать моменты начала и конца затмений из-за непрерывного изменения суммарного блеска системы между затмениями, относят к типам Lyr или W UMa. При этом обычно переменными типа Lyr (ЕВ) называют переменные с периодами больше 1 d и хорошо выраженным вторичным минимумом, глубина которого существенно меньше глубины главного минимума. Переменные с периодами меньше 1 d и очень незначительным различием или равенством глубин главного и вторичного минимумов блеска принято называть переменными типа W UMa (EW).

К сожалению, эта классификация не позволяет надежно судить о физических и возрастных характеристиках компонентов этих систем. Между тем уже сейчас развиты системы классификации тесных двойных систем, позволяющие решать эти вопросы.

Нормальная эволюция одиночной звезды главной последовательности означает, что, увеличивая свои размеры, она совершает переход с главной последовательности в область гигантов или сверхгигантов. Если же звезда оказывается компонентом тесной двойной системы, то нормальный ход ее эволюции нарушается.

Гравитационное поле вращающейся тесной двойной системы определяет положение так называемой внутренней критической эквипотенциальной поверхности Роша, сечение которой плоскостью, проходящей через центры масс обоих компонентов (А, В) и перпендикулярной к их орбитальной плоскости, изображено на рис. 4. Форма сечения и положение точки L 1 , называемой первой либрационной точкой Лагранжа, зависят от отношения масс компонентов; L 1 расположена ближе к менее массивному компоненту В. Размеры внутренней критической поверхности Роша определяют верхние возможные границы размеров динамически устойчивых компонентов двойной системы.


Рис. 4.

Если более массивный компонент А, эволюционируя быстрее, заполнит свою внутреннюю критическую поверхность (система из разделенной превратится в полуразделенную), то создадутся благоприятные условия для перехода вещества этого компонента через точку L 1 к менее массивному компоненту В. Начнется обмен масс между компонентами, в результате которого может произойти, как говорят, перемена ролей компонентов: менее массивный компонент станет более массивным и наоборот.

Газовый поток, текущий из точки L 1 к менее массивному компоненту может также образовать вокруг него в плоскости орбиты диск, поглощающий падающее на него вещество и называемый аккреционным диском.

В основу принимаемой нами классификации затменно-двойных систем положена классификация Свечникова (1969), опирающаяся на классификации Копала (1959) и Крата (1962) и изложенная также Свечниковым и Снежко (1974). Она основана на положении компонентов двойных систем на диаграмме (M V , B-V) и степени заполнения ими своих внутренних критических поверхностей Роша.

Рассмотрим основные типы затменных двойных систем с принятыми нами символами их сокращенных обозначений (рис. 1d). Следует подчеркнуть, что на рис. 1d, в отличие от рис. 1а, b, с, не указан ориентировочный возраст систем. Он может быть любым. Особенно это касается систем типа WR.

DM - разделенные системы главной последовательности (detached main sequence), оба компонента которых являются членами главной последовательности и не достигают своих внутренних критических поверхностей Роша.

DS - разделенные системы с субгигантом, в которых субгигант также еще не достигает своей внутренней критической поверхности.

AR - разделенные системы типа AR Lac, оба компонента которых - субгиганты, не достигающие своих внутренних критических поверхностей.

SD - полуразделенные (semi-detached) системы, в которых поверхность менее массивного компонента-субгиганта близка к его внутренней критической поверхности.

КЕ - контактные системы ранних (О-A3) спектральных классов, оба компонента которых близки по размерам к своим внутренним критическим поверхностям.

KW - контактные системы типа W UMa, с эллипсоидальными компонентами спектральных классов А5-К, главные из которых являются членами главной последовательности, а спутники располагаются левее и ниже ее на диаграмме M V , B-V.

DW - системы, сходные по своим физическим характеристикам с контактными системами типа W UMa, но не являющиеся контактными.

GS - системы, у которых один или оба компонента являются гигантами или сверхгигантами; в первом случае один из компонентов может быть членом главной последовательности.

Для массовой классификации затменно-двойных систем описанных выше типов Свечников и Истомин (1979) предложили пользоваться разработанными ими простыми критериями, показав, что в 90% случаев знание глубины главного минимума А 1 , разности глубин главного и вторичного минимумов А и периода изменения блеска системы позволяет достаточно уверенно отнести переменную к одному из указанных выше типов.

Кроме того, необходимо ввести еще несколько типов затменных систем, а именно:

WR - системы, среди компонентов которых содержатся звезды типа Вольфа-Райе (V444 Cyg).

PN - системы, компонентами которых являются ядра планетарных туманностей (UU Sge),

WD - системы, среди компонентов которых содержатся белые карлики,

RS - системы типа RS CVn (Плавец, Сметанова, 1959; Холл, 1972). Существенной особенностью этих систем является наличие в спектре сильных эмиссионных линий Н и К Ca II, а также небольших неправильных изменений блеска вне затмений, объясняющихся повышенной хромосферной активностью солнечного типа. Многие из систем типа RS CVn являются в то же время системами типов DS и AR.

Многие считают целесообразным сохранить и прежнюю классификацию затменных двойных, основанную на форме кривых блеска. Она проста, привычна и удобна для наблюдателей. Тип EW практически однозначно определяет принадлежность системы к типу KW, однако типы ЕА и ЕВ уже не позволяют судить о физических характеристиках компонентов, а сама Lyr вообще является пекулярной системой, в которой, по мнению Крущевского (1967), еще идет процесс перетекания массы от более массивного компонента к менее массивному.

Поэтому мы считаем возможным сочетание обеих систем классификации затменно-двойных и использование, например, следующей символики для обозначения их типов, в которой первая группа символов характеризует форму кривой блеска, а последующие -физические особенности компонентов: E/DM, EA/DS/RS, EB/KE, EW/KW, EA/DW EB/WR, EA/AR/RS, E/PN и т.п.

Рассматривая тесные двойные системы, не являющиеся затменными, но тем не менее показывающие переменность блеска, необходимо выделить два типа переменности: уже известный тип вращающихся эллипсоидальных переменных (Ell), т.е. двойных систем с эллипсоидальными компонентами, видимый суммарный блеск которых меняется с периодом, равным периоду орбитального обращения, вследствие изменения площади излучающей поверхности, обращенной к наблюдателю, и новый тип эруптивных переменных RS CVn (RS), являющийся аналогом типа E/RS затменных систем. К типу RS CVn можно относить не показывающие затмений двойные системы с эмиссией Н и К Са II в спектре, компоненты которых обладают повышенной хромосферной активностью, вызывающей переменность их блеска (UX Ari).

6.

Следующая характерная разновидность переменных, являющихся тесными двойными системами, это Новые звезды (N) - тесные двойные с периодами орбитального движения от 0. d 05 (WZ Sge) до 230 d (T CrB), одним из компонентов которых является карликовая горячая звезда. Новые звезды внезапно увеличивают свой блеск на 6-16 m а затем постепенно в течение нескольких лет или десятков лет возвращаются к первоначальному состоянию. Примерное положение горячих (вспыхивающих) компонентов Новых показано на рис. Id, Холодные компоненты, в зависимости от светимости горячих, являются гигантами, субгигантами или карликами спектральных классов К-М.

Спектры Новых близ максимума блеска сначала похожи на спектры поглощения A-F звезд высокой светимости. Затем в них появляются широкие эмиссионные линии водорода, гелия и других элементов о абсорбционными компонентами, свидетельствующими о наличии быстро расширяющейся оболочки. По мере ослабления блеска в спектре появляются запрещенные эмиссионные линии, характерные для спектров газовых туманностей, возбуждаемых горячей звездой. В минимуме блеска спектры Новых, как правило, непрерывны или сходны со спектрами звезд типа Вольфа-Райе. Признаки холодных компонентов обнаруживаются в спектрах лишь наиболее массивных систем.

У некоторых Новых после вспышки обнаруживаются пульсации горячих компонентов с периодами порядка 100 секунд и амплитудами около 0. m 05. Некоторые Новые, естественно, оказываются также затменными системами.

По характеру изменения блеска Новые делятся на быстрые (Na), медленные (Nb), очень медленные (Nc) и повторные (Nr).

Na - быстрые Новые, характеризующиеся быстрым подъемом блеска и уменьшающие блеск после достижения максимума на 3 m за 100 или меньше дней (GK Per).

Mb - медленные Новые, уменьшающие блеск после достижения максимума на 3 m за 150 и более дней (RR Pic).

Nc - Новые с очень медленным развитием, свыше десяти лет остающиеся в максимуме блеска и ослабевающие очень медленно. Единственный представитель-RT Ser. He исключено, что в действительности должны относиться к другому типу переменности.

Nr - повторные Новые Отличаются от типичных Новых тем, что у них зарегистрирована не одна, а две или несколько вспышек, разделенных интервалами от 10 до 80 лет (T CrB).

Недостаточно изученные объекты, сходные с Новыми по характеру изменений блеска или по спектральным особенностям, принято называть новоподобными (N1), К ним относятся не только переменные, показывающие новоподобные вспышки, но и объекты, у которых вспышки никогда не наблюдались, однако спектры их похожи на спектры бывших Новых, а небольшие изменения блеска напоминают те, которые свойственны бывшим Новым в минимуме блеска. Нередко, после надлежащего исследования, отдельных представителей этой весьма разнородной группы объектов удается отнести к тому или иному типу переменных звезд,.

Столь же разнородной группой являются переменные типа Z&nbap;And (симбиотические переменные) - тесные двойные, состоящие из горячей звезды и звезды позднего спектрального класса, суммарный блеск которых испытывает неправильные изменения с амплитудой до 4 m .

Новой разновидностью переменных звезд, несомненно, заслуживающий выделения ее в отдельный тип, являются переменные типа RR Tel. Это новонодобные симбиотические эруптивные переменные, блеск которых после возрастания на 4-6 m показывает значительные изменения, но до сих пор не вернулся к первоначальному уровню; до вспышки эти объекты могут показывать долгопериодические изменения блеска с амплитудой в одну-две величины; характерная особенность этих переменных - эмиссионный спектр высокого возбуждения, сходный со спектрами планетарных туманностей, звезд типа Вольфа-Райе и симбиотических переменных. Некоторые исследователи считают, что эти объекты, возможно, являются возникающими планетарными туманностями.

Еще одна хорошо выраженная разновидность эруптивных переменных, являющихся тесными двойными системами,-переменные типа U Gem (UG), нередко называемые карликовыми Новыми (см., например, Робинсон, Назер, 1979). Они состоят из звезды-карлика или субгиганта спектрального класса К-М, заполняющей объем своей внутренней критической поверхности Роша, и белого карлика, окруженного аккреционным диском. Орбитальные периоды заключены в пределах от 0. d 05 до 0. d 5. Спектр системы в минимуме блеска непрерывный с широкими эмиссионными линиями водорода и гелия. В максимуме блеска эти линии почти исчезают или превращаются в неглубокие линии поглощения. На рис. 1d показана область, занятая горячими компонентами переменных типа U Gem.

До сих пор нет полной ясности в решении вопроса о том, какой из компонентов звезд этого типа испытывает вспышку. Некоторые из этих систем являются затменными, причем можно полагать, что причиной уменьшения блеска при затмении является затмение горячего пятна, образованного в аккреционном диске падающим на него газовым потоком, исходящим от звезды класса К-М.

По характеру изменения блеска переменные типа U Gem можно разделить на три подтипа: SS Cyg, Z Cam и SU UMa. Второй из них до сих пор считался самостоятельным типом. По предложению Н.Н.Самуся, однако, целесообразно объединить эти подтипы в один тип - U Gem, чтобы избежать необходимости применения к ним термина "карликовые Новые". Сама U Gem при этом будет относиться к подтипу SS Cyg, а символика типов может быть следующей: UG(SS), UG(Z) , UG(SU).

Переменные типа UG(SS) увеличивают свой блеск за 1-2 d на2-6 d и через несколько дней возвращаются к первоначальному блеску. Промежутки между соседними вспышками меняются, но для каждой звезды характерен свой средний цикл, соответствующий средней амплитуде изменения ее блеска. Чем больше цикл, тем больше амплитуда. Значения циклов заключены в пределах от 10 до нескольких тысяч дней.

Переменные типа UG(Z) также показывают циклические вспышки, но в отличие от переменных типа UG(SS) иногда после вспышки не возвращаются к первоначальному блеску, а в течение нескольких циклов сохраняют величину, промежуточную между максимальной и минимальной. Значения циклов заключены в пределах от 10 до 40 d , амплитуды изменения блеска - от 2 до 5 m .

Переменные типа UG(SU), впервые выделенного Бреном и Пти (1952), характеризуются наличием двух видов вспышек - нормальных сверхмаксимумов. Нормальные, короткие вспышки похожи на вспышки звезд типа UG(SS). Сверхмаксимумы ярче нормальных на 2 m , более чем в пять раз продолжительнее (шире) и наступают более чем в три раза реже нормальных (Фогт, 1980). Во время сверхмаксимумов - на кривой блеска наблюдаются накладывающиеся на нее периодические колебания (superhamps) с периодом, близким к орбитальному, и амплитудами около 0. m 2-0. m 3. Орбитальные периоды меньше 0. d 1, спектральный класс спутников - dM.

7.

В случае, если горячим компонентом в тесной двойной системе является нейтронная звезда с магнитным полем, то вещество, истекающее от спутника, направляется этим полем в область магнитных полюсов вращающейся нейтронной звезды. В этих полюсах образуются горячие пятна и возникает сильное направленное рентгеновское излучение. Если оно при вращении нейтронной звезды пересекает положение наблюдателя, система воспринимается им как рентгеновский пульсар, который может быть и оптическим. В свою очередь рентгеновское излучение, нагревающее атмосферу более холодного спутника нейтронной звезды, переизлучается в виде оптического высокотемпературного излучения (эффект отражения), делая более ранним и спектральный класс соответствующего участка поверхности спутника. Это приводит к весьма своеобразной картине оптической переменности тесных двойных, являющихся источниками сильного рентгеновского излучения (слабое рентгеновское излучение, по-видимому, есть у всех звезд, включая Солнце).

В связи с этим представляется целесообразным ввести несколько новых типов переменности блеска, связанных с наличием сильного рентгеновского излучения. Символические обозначения типов частично предложены Е.А. Карицкой. В обсуждении принципов выделения этих типов участвовали также Н.Н.Самусь и Н.Е. Курочкин.

ХВ - рентгеновские (X) вспыхивающие (bursters). Тесные двойные системы, показывающие рентгеновские и оптические вспышки продолжительностью от нескольких секунд до десяти минут с амплитудой порядка 0. m 1V (V801 Ara, V926 Sco).

XN1a - рентгеновские новоподобные (XNI), главный компонент которых является сверхгигантом раннего спектрального класса, а спутник-горячим компактным объектом (белым карликом или нейтронной звездой). При вспышке главного компонента выброшенная им масса падает на компактный объект, вызывая с значительным запозданием появление рентгеновского излучения. Амплитуда-порядка 1-2 m V (V725 Таи).

XN1b - рентгеновские новоподобные (XN1), содержащие наряду с горячим компактным объектом карлик или субгигант спектрального класса К-М. Системы, быстро увеличивающие свой блеск на 4-9 m V одновременно в оптическом и рентгеновском диапазонах длин волн без выброса оболочки. Продолжительность вспышки-до нескольких месяцев (V616 Mon).

Обычные Новые не показывают заметного рентгеновского излучения при вспышке (например, V1500 Cyg). Но вспышки переменных типа U Gem могут сопровождаться таким излучением (оно уже обнаружено при вспышках U Gem и SS Cyg). В связи с этим могут возникнуть трудности при отнесении звезды к типу XN1bили UG, которые пока не представляются нам непреодолимыми.

XFL - рентгеновские флуктуирующие (F) системы; главный компонент - эллипсоидальный (L) сверхгигант раннего спектрального клас са. Наряду с изменением блеска с амплитудой порядка 0. m 1, обусловленным вращением эллипсоидального компонента с периодом в несколько дней (орбитальным), наблюдаются флуктуации рентгеновского и оптического излучения с периодом порядка десятков миллисекунд (Cyg X-l = V1357 Cyg).

XPL - рентгеновские системы с пульсаром (Р); главный компонент - эллипсоидальный (L) сверхгигант раннего спектрального класса. Эффект отражения очень мал, и переменность блеска в основном обусловлена вращением эллипсоидального главного компонента. Периоды изменения блеска заключены в пределах от 1 d до 10 d , период пульсара в системе - от 1 секунды до 100 минут., Амплитуда изменений блеска не превышает нескольких десятых звездной величины (Vel X-1 = GP Vel).

XPRE - рентгеновские двойные с пульсаром (Р), характеризующиеся наличием эффекта отражения (R) и затмениями (Е). Состоят из компонента спектрального класса dB-dF и горячего компактного компонента. Когда главный компонент системы подвергается рентгеновскому облучению, средний блеск системы максимален, в периоды малой активности рентгеновского источника - минимален. Полная амплитуда изменений блеска может достигать 2-3 m . Вторичный минимум на кривой изменения блеска, носящей затменный характер, может исчезать и вновь появляться (HZ Her).

ХМ - рентгеновские двойные, состоящие из карлика спектрального класса dK-dM и горячего компактного объекта с сильным магнитным полем (М). Аккреция вещества на магнитные полюса компактного объекта сопровождается появлением круговой поляризации излучения; поэтому эти системы часто называются полярами. Обычно амплитуда изменения блеска порядка 1 m , но средний блеск при облучении главного компонента рентгеновским излучением может возрастать на 3 m . Полная амплитуда изменения блеска может достигать 4-5 m . Карликовая разновидность систем типа XPRE (AM Her, AN UMa).

XI - рентгеновские неправильные (I). Тесные двойные системы, со стоящие из горячего компактного объекта и карлика спектрального класса dG-dM; характеризуются неправильными изменениями блеска с характерным временем порядка минут и часов и амплитудой порядка 1 m (V818 Sco).

8.

Рассмотренная система классификации охватывает далеко не все известные нам разновидности переменных звезд. Многие звезды и впредь будут считаться уникальными.

Уникальные объекты - это, видимо, кратковременные переходные стадии от одних типов переменности к другим или начальные и конечные стадии этих типов. На наших глазах FG Sge - центральная звезда планетарной туманности - пересекла полосу нестабильности цефеид, начав пульсировать с возрастающим периодом; RU Cam - углеродная переменная типа W Vir катастрофически уменьшила амплитуду изменений блеска с 1. m 2 до 0. m 1; удивительная переменная V725 Sgr увеличила период с 16 d до 21 d , а затем почти перестала пульсировать.

Все эти и другие подобные им объекты заслуживают непрерывного слежения за ними. К сожалению, об этом забывают.

На каждые несколько переменных, которые удается объединить в новый тип, поверив в то, что они обладают общностью каких-то признаков пока появляется такое количество новых переменных, не похожих ни на одну другую, что число уникальных объектов в каталоге не уменьшается.

Литература

Бердсли, Жижка, 1977- Beardsley W.R.. Zizka E.R., Revista Mexicana Astron. Astrof. 3 , 109.

Брегер, 1979- Breger М., PASP 91, 5. Брен, Пти, 1952-Brun A., Petit М., BAF 12, 1.

Вишневский, Джонсон, 1979 - Wisniewski W.Z., Johnson H.L., Sky and Telescope 57, No. 1, 4.

Гутник, 1930 - Guthnick P., Sitzungsberichten der Preuss. Akad. Der Wissenschaften, Phys.-math. Klasse 1930.I.

Гутник, Прагер, 1915 - Guthnick P., Prager R., AN 201, 443.

Джакате, 1979 - Jakate Sh.M., AJ 84, No. 7, 1042.

Джонсон, 1980 - Johnson H.L., Revista Mexicana Astron. Astrof. 5, 25.

Ефремов Ю.Н., 1975 - "Переменные звезды", М., Знание, стр.9-10.

Жиляев и др., 1978 - Жиляев Б.Е., Орлов М,Я., Пугач А.Ф., Родригес М.Г., Тоточава А.Г., "Звезды типа R Северной Короны", Киев, Наукова думка, 128 с.

Копал, 1959-Kopal Zd., Close binarysystems, ed. Chapman and Hall, London.

Крат В.А. 1962 - в кн. "Курс астрофизики и звездной астрономии", М., Физматгиз, т.2, гл. V, с.129-134.

Крушевский, 1967 - Kruszewski A., Acta Astronomica 17, 297.

Кубяк, 1979 - Kubiak М., Acta Astronomica 29 , 220.

Кукаркин и др., 1969 - Кукаркин Б.В., Холопов П,Н., Ефремов Ю.Н., Кукаркина Н.П., Курочкин Н.Е., Медведева Г.И., Перова Н.Б., Федорович В.П., Фролов М.С., Общий каталог переменных звезд, т. 1, третье издание, М.

Нейбауэр, 1935 - Neubauer F.J., Lick Obs. Bull. 17 , 109.

Перси, 1978 - Регсу J.R., JRAS Can. 72 , 162.

Плавец, Сметанова, 1959 - Plavec М., Smetanova М., ВАС 10, 192.

Робинсон, Назер, 1979 - Robinson E.L., Nather R.E., ApJ Suppl.Ser. 38 , 461.

Свечников М.А., 1969 - Каталог орбитальных элементов, масс и светимостей тесных двойных звезд. Уч.зап. УрГУ, сер. астрон., вып. 5.

Свечников М.А., Истомин Л.Ф., 1979, АЦ №1083.

Свечников М.А., Снежко Л.И., 1974-в кн. "Явления нестационарности и звездная эволюция", М., Наука, гл. 5, с. 181-260.

Струве, 1955 - Struve О., Sky and Telescope 14, 461.

Унно и др., 1979 - Unno W., Osaki Y., Ando H., Shibahash; H., Nonradial oscillations of stars, Univ. of Tokyo Press.

Фист, 1975 - Feast M.W., The R Coronae Borealis type variables, IAU Symp. No. 67, Variable stars and stellar evolution, D.Reidel Publ. Corp., Dordrecht - Holland/Boston - U.S.A., p. 129-141.

Фогт. 1980 - Vogt N., AsAp 88, 66.

Фэз, 1935 - Fath E.A., Lick Obs. Bull. 17, 115.

Холл, 1972 - Hall D.S., PASP 84, 323.


 

Возможно, будет полезно почитать: